K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2017

Ta có: \(\frac{1}{2}A=\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{100}{2^{101}}\)

\(A-\frac{1}{2}A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}-\frac{100}{2^{101}}\)

Ta có: \(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{100}}=1-\frac{1}{2^{100}}< 1\)

\(\Rightarrow\frac{1}{2}A< 1-\frac{100}{2^{101}}\)

\(\Rightarrow A< 2-\frac{200}{2^{101}}< 2\)

Vậy A<2

5 tháng 1 2020

2A=1+1/2+1/22+ ..+1/299

2A-A=1-1/2100

Vì 1-1/2^100>0>-2

=>A>-2

30 tháng 1 2020

\(A=\frac{-1.3}{2^2}.\frac{-2.4}{3^2}...\frac{-99.101}{100^2}\)

\(=-\left(\frac{1.2...99}{2.3...100}.\frac{3.4...101}{2.3...100}\right)\)

\(=-\left(\frac{1}{100}.\frac{101}{2}\right)\)

\(=-\frac{101}{200}< \frac{-100}{200}=\frac{-1}{2}\)

7 tháng 12 2016

A>1/2

Xin lỗi mình đang bận để lúc khác mình sẽ giải chi tiết

 

AH
Akai Haruma
Giáo viên
6 tháng 7

Lời giải:

$A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}$

$3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}$

$\Rightarrow 3A-A=1-\frac{1}{3^{100}}$

$\Rightarrow 2A=1-\frac{1}{3^{100}}<1$

$\Rightarrow A< \frac{1}{2}$

$\Rightarrow A< B$