Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3) \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=1\)
\(\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)\left(a+b+c\right)=a+b+c\)
\(\dfrac{a^2+a\left(b+c\right)}{b+c}+\dfrac{b^2+b\left(a+c\right)}{a+c}+\dfrac{c^2+c\left(a+b\right)}{a+b}=a+b+c\)
\(\dfrac{a^2}{b+c}+a+\dfrac{b^2}{a+c}+b+\dfrac{c^2}{a+b}+c=a+b+c\)
\(\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{a+b}=0\)
Vậy: \(P=0\)
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha
Câu 2/
Ta có: \(\frac{xy+2y+1}{xy+x+y+1}=1+\frac{y-x}{xy+x+y+1}\)
\(=1+\frac{\left(y+1\right)-\left(x+1\right)}{\left(x+1\right)\left(y+1\right)}\)
\(=1+\frac{1}{x+1}-\frac{1}{y+1}\)
Tương tự ta có:
\(\hept{\begin{cases}\frac{yz+2z+1}{yz+y+z+1}=1+\frac{1}{y+1}-\frac{1}{z+1}\\\frac{zx+2x+1}{zx+z+x+1}=1+\frac{1}{z+1}-\frac{1}{x+1}\end{cases}}\)
\(\Rightarrow P=3\)
Câu 3/
Ta có:
\(\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\left(a+b+c\right)=1a+b+c+\left(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\right)\)
\(\Rightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=0\)
\(VT=\frac{\left(yz\right)^2}{x^2yz\left(y+z\right)}+\frac{\left(xz\right)^2}{zxy^2\left(x+z\right)}+\frac{\left(xy\right)^2}{xyz^2\left(x+y\right)}\)
\(VT=\frac{2\left(yz\right)^2}{xy+zx}+\frac{2\left(xz\right)^2}{xy+yz}+\frac{2\left(xy\right)^2}{xz+yz}\ge\frac{2\left(yz+xz+xy\right)^2}{2\left(xy+yz+zx\right)}=xy+yz+zx\)
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{\sqrt[3]{2}}\)
Bài 1: Theo đề : \(2ab+6bc+2ac=7abc\) \(;a,b,c>0\)
Chia cả 2 vế cho \(abc>0\Rightarrow\frac{2}{c}+\frac{6}{a}+\frac{2}{b}=7\)
Đặt: \(\hept{\begin{cases}x=\frac{1}{a}\\y=\frac{1}{b}\\z=\frac{1}{c}\end{cases}}\Rightarrow\hept{\begin{cases}x,y,z>0\\2z+6x+2y=7\end{cases}}\)
Khi đó: \(M=\frac{4ab}{a+2b}+\frac{9ac}{a+4c}+\frac{4bc}{b+c}=\frac{4}{2x+y}+\frac{9}{4x+z}+\frac{4}{y+z}\)
\(\Rightarrow M=\frac{4}{2x+y}+2x+y+\frac{9}{4x+z}+4x+z+\frac{4}{y+z}+y+z-\left(2x+y+4x+z+y+z\right)\)
\(=\left(\frac{2}{\sqrt{x+2y}}-\sqrt{x+2y}\right)^2+\left(\frac{3}{\sqrt{4x+z}}-\sqrt{4x+z}\right)^2+\left(\frac{2}{\sqrt{y+z}}-\sqrt{y+z}\right)^2+17\ge17\)
Khi: \(\hept{\begin{cases}x=\frac{1}{2}\\y=z=1\end{cases}}\Rightarrow M=17\)
\(Min_M=17\Leftrightarrow a=2;b=1;c=1\)
ミ★๖ۣۜBăηɠ ๖ۣۜBăηɠ ★彡 chém bài khó nhất rồi nên em xin mạn phép chém bài dễ ạ.
2/\(VT=\Sigma_{cyc}\frac{\left(x+y+z\right)^2-x^2}{x\left(x+y+z\right)+yz}=\Sigma_{cyc}\frac{\left(y+z\right)\left(2x+y+z\right)}{\left(x+y\right)\left(x+z\right)}\)
\(\ge\Sigma_{cyc}\frac{\left(y+z\right)\left(2x+y+z\right)}{\frac{\left(2x+y+z\right)^2}{4}}=\Sigma_{cyc}\frac{4\left(y+z\right)}{2x+y+z}=\Sigma_{cyc}\frac{2\left(y+z-2x\right)}{2x+y+z}+6\)
\(=\Sigma_{cyc}\left(\frac{2\left(x+y+z\right)\left(y+z-2x\right)}{2x+y+z}-\frac{3}{2}\left(y+z-2x\right)\right)+6\)
\(=\Sigma_{cyc}\frac{\left(y+z-2x\right)^2}{2\left(2x+y+z\right)}+6\ge6\)
ta co A+B+C=...
QUY ĐỒNG BÌNH THƯỜNG
\(\left(x-y\right)\left(1+yz\right)\left(1+xz\right)+\left(y-z\right)\left(1+xy\right)\left(1+xz\right)+\left(z-x\right)\left(1+xy\right)\left(1+yz\right)\)
=\(\left(1+xz\right)\left(x+xyz-y-y^2z+y+xy^2-z-xyz\right)+\left(z-x\right)\left(1+xy\right)\left(1+yz\right)\)
=\(\left(1+xz\right)\left(-1-y^2\right)\left(z-x\right)+\left(z-x\right)\left(1+xy\right)\left(1+yz\right)\)
=\(\left(z-x\right)\left(yz-xz+xy-y^2\right)\)
tự giải tiếp
Ý hỏi cách làm nhanh, chứ k phải quy đồng bạn ơi.