Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3. Bh
Ta có: 39 chia a dư 4 và 48 chia a dư 6 (a thuộc N*, a > 6)
=> 39 - 4 \(⋮\)a và 48 - 6 \(⋮\)a
=> 35 \(⋮\)a và 42 \(⋮\)a
=> a thuộc ƯC (35; 42)
35 = 7.5
42 = 2.3.7
ƯCLN (35; 42) = 7
=> ƯC (35; 42) = Ư (7) = {1; 7}
Mà a > 6
=> a = 7
Vậy a = 7
1) Ta có 62002 = ...6
Ta có 22001 = 22000.2 = (24)500 . 2 = (...6)500.2 = (...6).2 = (....2)
Ta có : 71999 = 71996.73 = (74)449 . (...3) = (...1)449 . (...3) = (...1).(...3) = ...3
Ta có : 18177 = 18176.18 = (184)44 . 18 = (...6)44 . 18 = (...6).18 = ....8
2) a. Ta có 175 = 174.17 = (...1).17 = ...7
Lại có 244 = (242)2 = (...6)2 = ...6
Lại có : 1321 = 1320.13 = (134)5 . 13 = (..1)5 . 3 = (...1).3 = ...3
Khi đó 175 + 244 - 13 = ..7 + ...6 - ...3 = ...0 \(⋮\)10
3) Ta có \(\hept{\begin{cases}39:a\text{ dư 4}\\48:a\text{ dư 6}\end{cases}}\Rightarrow\hept{\begin{cases}\left(39-4\right)⋮a\\\left(48-6\right)⋮a\end{cases}}\Rightarrow\hept{\begin{cases}35⋮a\\42⋮a\end{cases}}\Rightarrow a\inƯC\left(35;42\right)\)(đk : a > 4 > 6 => a > 6)
mà 35 = 5.7
42 = 7.2.3
=> ƯCLN(35 ; 42) = 7
ƯC(35 ; 42) = Ư(7) = {1 ; 7}
=> a \(\in\left\{1;7\right\}\)mà a > 6
=> a = 7
4) 16x < 1284
=> (24)x < (27)4
=> 24x < 228
=> 4x < 28
=> x < 7
=> \(x\in\left\{0;1;2;3;4;5;6\right\}\)
b) 5x.5x + 1.5x + 2 \(\le\)100..00 : 218 (18 chữ số 0)
=> 53x + 6 \(\le\)1018 : 218
=> 53x + 6 \(\le\)518
=> 3x + 6 \(\le\)18
=> 3x \(\le\)12
=> x \(\le\)4
=> \(x\in\left\{1;2;3;4\right\}\)
Lời giải:
Gọi số cần tìm là $a$
Theo bài ra thì:
$a-3\vdots 4\Rightarrow a+1\vdots 4$
$a-4\vdots 5\Rightarrow a+1\vdots 5$
$a-5\vdots 6\Rightarrow a+1\vdots 6$
Tức là $a+1$ là bội chung của $4,5,6$
$\Rightarrow a+1\vdots \text{BCNN(4,5,6)}$
$\Rightarrow a+1\vdots 60$
Đặt $a=60k-1$ với $k$ là số tự nhiên
$a\vdots 7$ tức là $60k-1\vdots 7$
$\Leftrightarrow 60k-1-56k\vdots 7$
$\Leftrightarrow 4k-1\vdots 7$
$\Leftrightarrow 4k-8\vdots 7$
$\Leftrightarrow 4(k-2)\vdots 7$
$\Leftrightarrow k-2\vdots 7$
Để $a$ nhỏ nhất thì $k$ nhỏ nhất. Trong trường hợp này, số $k$ tự nhiên nhỏ nhất là $2$
$\Rightarrow a=60k-1=60.2-1=119$
\(A\)chia cho \(5\)dư \(4\)nên \(y=4\)hoặc \(y=9\)mà \(A\)chia hết cho \(2\)nên \(y=4\).
Do \(A\)chia hết cho \(3\)nên tổng các chữ số của nó chia hết cho \(3\):
\(\left(5+x+1+4\right)⋮3\Leftrightarrow\left(x+1\right)⋮3\Rightarrow x\in\left\{2,5,8\right\}\).
nếu gấp bạn có thể ghi
Gọi sct là a
Có a-3 thuộc{0;5;10;15;20;...}
suy ra a thuộc {3;8;13;18;23;...} (1)
Có a-4 thuộc {0;7;14;21;28;..}
suy ra a thuộc {4;11;18;25;31;..} (2)
từ (1) và (2) suy ra a=18
Vì chia cho 3 dư 2 ; cho 5 dư 4 và 7 dư 6 nên số đó thêm 1 đơn vị sẽ chia hết cho 3 ; 5 và 7
Mà số lớn nhất chia hết cho 3 ; 5 và 7 là 945
Vậy số cần tìm là:
945 − 1 = 944
ĐS: 944
Các số chia cho 3 dư 2 có 1 chữ số là:
5 ; 8 ; 11; 14 ; 17 ; 20 ; 23 ; 25 ; 28 ; 31; 34
Các số chia cho 5 dư 4 có 1 chữ số là:
9 ; 14 ; 19 ; 24 ; 29 ; 34 ; 39 ; 44
Các số chia cho 7 dư 6 có 1 chữ số là:
13 ; 20 ; 27 ; ; 34 ; 41 ; 48 ; 55 ; 62
Trong các số trên chỉ có số 34 mới đủ điều kiện
Vậy số cần tìm là 34 nhé
a) thấy 60 chia hết cho 15 => 60n chia hết cho 15
45 chia hết cho 15 nhưng không chi hết cho 30
=> 60n+45 chia hết cho 15 nhưng không chia hết cho 30
b) ta có 3 số nguyên liên tiếp là a,a+1,a+2
tổng của 3 số nguyên liên tiếp này là a+a+1+a+2=3a+3 chia hết cho 3
d) vì khi chia 4 stn này cho 5 nhận các số dư khác nhau => 1 số là 5k+1, 1 số là 5n+2, 1 số là 5a+3, 1 số là 5b+4 (với k,n,a,b thuộc n)
=> tổng 4 stn này là 5k+1+5n+2+5a+3+5b+4= 5(k+n+a+b)+5 chia hết cho 5
bạn nhóm tùng cặp 2 số như 4+4^2=4(1+4) chia hết 5
4^3+4^4=4^3(1+4) chia hết 5 ....=> dư 0
chúc bạn hk tốt