K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2017

vì 1/2+1/3+1/4+1/5+1/6+.....+1/11=2,0198765(3)>2 => A>2

24 tháng 3 2019

Ta có: \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{63}>\dfrac{1}{32}+\dfrac{1}{32}+..+\dfrac{1}{32}\left(có\right)62sốhạng\)

\(\Rightarrow\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{63}>\dfrac{1}{32}.63=\dfrac{63}{32}=2\)

\(\Rightarrow\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{63}>2\)(đây là điều cần chứng tỏ)

24 tháng 3 2019

Hình như bn nhầm rồi Nguyễn Thành Trương.Mk tính 63/32 đâu có bằng 2.Mà có 62 số hạng thì phải nhân vs 62 chứ.Cậu xem lại và giải lại giúp mk nhé mk đang rất cần gấp Nguyễn Thành Trươnghiha

xét từng đoạn 1 , 1/2 ,1/2^3 ,1/2^4 ,1/2^5 ,1/2^6 
ta có 
1 = 1 
1/2 + 1/3 < 1/2 + 1/2 = 1 
1/4 + 1/5 + .. + 1/7 < 1/4 +..+ 1/4 = 4/4 = 1 
1/8 + 1/9 + .. + 1/15 < 1/8 + .. + 1/8 = 8/8 = 1 
tương tự 
1/16 +1/17 + .. + 1/31 < 1 
1/32 + 1/33 + .. + 1/63 < 1 
=> cộng lại => B < 6

19 tháng 6 2015

a) A có số số hạng là: (2n+1-1) :2 +1 = n+1 (số)

=> \(A=\frac{\left(2n+1+1\right).\left(n+1\right)}{2}=\frac{\left(2n+2\right).\left(n+1\right)}{2}=\frac{2\left(n+1\right)\left(n+1\right)}{2}\)

                                                                           \(=\left(n+1\right).\left(n+1\right)=\left(n+1\right)^2\)

=> A là số chính phương

b) B có số số hạng là : (2n-2):2+1= n (số)

=> \(B=\frac{\left(2n+2\right).n}{2}=\frac{2\left(n+1\right).n}{2}=\left(n+1\right).n\)

=> B không là số chính phương.

3 tháng 12 2015

A có số số hạng là:

(2n+1-1):2+1=n+1(số)

=>\(\frac{\left(2n+1+1\right).\left(n+1\right)}{2}=\frac{\left(2n+2\right).\left(n+1\right)}{2}=\frac{2\left(n+1\right)\left(n+1\right)}{2}\)

                                                       \(=\left(n+1\right).\left(n+1\right)=\left(n+1\right)^2\)  

=>A là số chính phương

9 tháng 5 2018

chứng tỏ j vậy bạn

10 tháng 5 2018

chứng tỏ \(\dfrac{B}{3}\)k phải là số nguyên☺

25 tháng 10 2018

Bài 4:

Ta có:

M=1+7+72+...+781

M=(1+7+72+73)+(74+75+76+77)+...+(778+779+780+781)

M=(1+7+72+73)+74.(1+7+72+73)+...+778.(1+7+72+73)

M=400+74.400+...+778.400

M=400.(1+74+...+778)

\(\Rightarrow\)M=......0

Vậy chữ số tận cùng của M là chữ số 0

Bài 5:

a)Ta có:

M=1+2+22+...+2206

M=(1+2+22)+(23+24+25)+...+(2204+2205+2206)

M=(1+2+22)+23.(1+2+22)+...+2204.(1+2+22)

M=7+23.7+...+2204.7

M=7.(1+23+...+2204)\(⋮\)7

Vậy M chia hết cho 7

c)Câu này đề có phải là M+1=2x ko?Nếu đúng thì giải như zầy nè:

Ta có:

      M=1+2+22+...+2206

     2M=2+22+23+...+2207

 2M-M=(2+22+23+...+2207)-(1+2+22+...+2206)

       M=2+22+23+...+2207-1-2-22-...-2206

\(\Rightarrow\)M=2207-1

M+1=2207-1+1

M+1=2207

Ta có:

M+1=2x

2x=M+1

2x=2207

x=2207:2

x=\(\frac{2^{207}}{2}\)

Bài 6:

Ta có:

A=(1+3+32)+(33+34+35)+...+(357+358+359)

A=(1+3+32)+33.(1+3+32)+...+357.(1+3+32)

A=13+33.13+...+357.13

A=13.(1+33+..+357)\(⋮\)13

Vậy A chia hết cho 13

mk chỉ biết giải dc từng nấy câu thui. thông cảm cho mk nha