K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
31 tháng 12 2023

Lời giải:

$\frac{\sqrt{x}+1}{\sqrt{x}+4}=\frac{\sqrt{x}+4-3}{\sqrt{x}+4}=1-\frac{3}{\sqrt{x}+4}$

Vì $\sqrt{x}\geq 0$ nên $\sqrt{x}+4\geq 4$
$\Rightarrow \frac{3}{\sqrt{x}+4}\leq \frac{3}{4}$

$\Rightarrow \frac{\sqrt{x}+1}{\sqrt{x}+4}=1-\frac{3}{\sqrt{x}+4}\geq 1-\frac{3}{4}=\frac{1}{4}$

Vậy $M=\frac{1}{4}$

------------------

$N=\frac{\sqrt{x}+5}{\sqrt{x}+2}=1+\frac{3}{\sqrt{x}+2}$

Do $\sqrt{x}\geq 0$ nên $\sqrt{x}+2\geq 2$

$\Rightarrow \frac{3}{\sqrt{x}+2}\leq \frac{3}{2}$

$\Rightarrow \frac{\sqrt{x}+5}{\sqrt{x}+2}\leq 1+\frac{3}{2}=\frac{5}{2}$

Vậy $N=\frac{5}{2}$

$\Rightarrow 2M+N =2.\frac{1}{4}+\frac{5}{2}=3$

Đáp án C.

8 tháng 3 2018

Tìm được A =  24 5 và B =  - 6 x - 4  với x > 0 và x ≠ 4 ta tìm được 0 < x < 1

Ta có M =  - 1 + 2 x ∈ Z =>  x ∈ Ư(2) từ đó tìm được x=1

24 tháng 6 2019

Đồ thị hàm số song song với đường thẳng y = 4x -2 khi và chỉ khi:

m - 1 = 4 2 n ≠ - 2 ⇔ m = 5 n ≠ - 1

Khi đó, hàm số trở thành: y = 4x + 2n

Đồ thị hàm số đi qua điểm A (-1; 3) khi:

3 = 4.(-1) + 2n ⇔ 2n = 7 ⇔ n = 7/2

Đối chiếu với điều kiên n ≠ -1 thỏa mãn

Vậy hàm số cần tìm là y = 4x + 7

Bài 1:

a: Để (d) là hàm số bậc nhất thì 2m-2<>0

hay m<>1

b: Để (d) là hàm số đồng biến thì 2m-2>0

hay m>1

c: Hàm số (d') đồng biến vì a=4>0

Bài 2: 

b: Tọa độ giao điểm là:

\(\left\{{}\begin{matrix}-x+6=3x-6\\y=-x+6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=3\end{matrix}\right.\)

NV
21 tháng 1 2021

1.

Gọi \(d=ƯC\left(2n^2+3n+1;3n+1\right)\)

\(\Rightarrow2n^2+3n+1-\left(3n+1\right)⋮d\)

\(\Rightarrow2n^2⋮d\Rightarrow2n\left(3n+1\right)-3.2n^2⋮d\)

\(\Rightarrow2n⋮d\Rightarrow2\left(3n+1\right)-3.2n⋮d\Rightarrow2⋮d\Rightarrow\left[{}\begin{matrix}d=1\\d=2\end{matrix}\right.\)

\(d=2\Rightarrow3n+1=2k\Rightarrow n=2m+1\)

\(\Rightarrow n\) lẻ thì A không tối giản

\(\Rightarrow n\) chẵn thì A tối giản

NV
21 tháng 1 2021

2.

Giả thiết tương đương:

\(xy^2+\dfrac{x^2}{z}+\dfrac{y}{z^2}=3\)

Đặt \(\left(x;y;\dfrac{1}{z}\right)=\left(a;b;c\right)\Rightarrow a^2c+b^2a+c^2b=3\)

Ta có: \(9=\left(a^2c+b^2a+c^2b\right)^2\le\left(a^4+b^4+c^4\right)\left(c^2+a^2+b^2\right)\)

\(\Rightarrow9\le\left(a^4+b^4+c^4\right)\sqrt{3\left(a^4+b^4+c^4\right)}\)

\(\Rightarrow3\left(a^4+b^4+c^4\right)^3\ge81\Rightarrow a^4+b^4+c^4\ge3\)

\(\Rightarrow M=\dfrac{1}{a^4+b^4+c^4}\le\dfrac{1}{3}\)

\(M_{max}=\dfrac{1}{3}\) khi \(\left(a;b;c\right)=\left(1;1;1\right)\) hay \(\left(x;y;z\right)=\left(1;1;1\right)\)

28 tháng 10 2023

Để hai đồ thị này song song thì

\(\left\{{}\begin{matrix}2m+4=m-1\\n< >2n-2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m=-5\\n< >2\end{matrix}\right.\)