Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\dfrac{1}{2}\left(\dfrac{2\sqrt{bc}}{a+2\sqrt{bc}}+\dfrac{2\sqrt{ac}}{b+2\sqrt{ac}}+\dfrac{2\sqrt{ab}}{c+2\sqrt{ab}}\right)\)
\(P=\dfrac{1}{2}\left(1-\dfrac{a}{a+2\sqrt{bc}}+1-\dfrac{b}{b+2\sqrt{ca}}+1-\dfrac{c}{c+2\sqrt{ab}}\right)\)
\(P=\dfrac{3}{2}-\dfrac{1}{2}\left(\dfrac{a}{a+2\sqrt{bc}}+\dfrac{b}{b+2\sqrt{ca}}+\dfrac{c}{c+2\sqrt{ab}}\right)\)
\(P\le\dfrac{3}{2}-\dfrac{1}{2}.\dfrac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2}{a+2\sqrt{bc}+b+2\sqrt{ca}+c+2\sqrt{ab}}=\dfrac{3}{2}-\dfrac{1}{2}.\dfrac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2}{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2}=1\)
\(P_{max}=1\) khi \(a=b=c\)
\(\frac{1}{2}\ge\frac{1}{a}+\frac{1}{b}\ge\frac{1}{2}\left(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}\right)^2\Rightarrow\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}\le1\)
\(\Rightarrow1\ge\frac{4}{\sqrt{a}+\sqrt{b}}\Rightarrow\sqrt{a}+\sqrt{b}\ge4\)
\(\frac{1}{2}\ge\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\Rightarrow\frac{1}{a+b}\le\frac{1}{8}\Rightarrow-\frac{1}{a+b}\ge-\frac{1}{8}\)
\(\Rightarrow M\ge4-\frac{1}{8}=\frac{31}{8}\)
Dấu "=" xảy ra khi \(a=b=4\)
Áp dụng BĐT bunniacoxki ta có:
\(\left(b^2+\left(c+a\right)^2\right)\left(1+4\right)\ge\left(b+2\left(a+c\right)\right)^2\)
=> \(\sqrt{\frac{a^2}{b^2+\left(c+a\right)^2}}\le\sqrt{5}.\frac{a}{b+2c+2a}\)
=> \(VT\le\sqrt{5}.\left(\frac{a}{b+2c+2a}+\frac{b}{c+2a+2b}+\frac{c}{a+2b+2c}\right)\)
Cần CM \(\frac{a}{b+2c+2a}+\frac{b}{c+2a+2b}+\frac{c}{a+2b+2c}\le\frac{3}{5}\)
<=>\(\left(\frac{1}{2}-\frac{a}{b+2c+2a}\right)+\left(\frac{1}{2}-\frac{b}{c+2a+2b}\right)+\left(\frac{1}{2}-\frac{c}{a+2b+2c}\right)\ge\frac{9}{10}\)
<=>\(\frac{b+2c}{b+2c+2a}+\frac{c+2a}{c+2a+2b}+\frac{a+2b}{a+2b+2c}\ge\frac{9}{5}\)
Áp dụng bđt buniacoxki dạng phân thức ở vế trái:
=> \(VT\ge\frac{\left(b+2c+c+2a+a+2b\right)^2}{\left(b+2c\right)^2+2a\left(b+2c\right)+\left(c+2a\right)^2+2b\left(c+2a\right)+\left(a+2b\right)^2+2c\left(a+2b\right)}\)
\(=\frac{9\left(a+b+c\right)^2}{5\left(a+b+c\right)^2}=\frac{9}{5}\)(ĐPCM)
Dấu bằng xảy ra khi a=b=c