Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo bài ra, ta có: \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\) \(\Rightarrow\hept{\begin{cases}x=3k\\y=4k\\z=5k\end{cases}}\)
Ta có: \(P=\frac{2017x+2018y-2019z}{2017x-2018y+2019z}=\frac{2017.3k+2018.4k-2019.5k}{2017.3k-2018.4k+2019.5k}\)
\(P=\frac{6051k+8072k-10095k}{6051k-8072k+10095k}=\frac{k\left(6051+8072-10095\right)}{k\left(6051-8072+10095\right)}=\frac{4028}{8074}=\frac{2014}{4037}\)
Ta có:Đặt\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\)
\(\Rightarrow\hept{\begin{cases}x=3k\\y=4k\\z=5k\end{cases}}\)
Thay vào đề bài
\(\Rightarrow P=\frac{2017x+2018y-2019z}{2017x-2018y+2019z}=\frac{2017.3.k+2018.4.k-2019.5.k}{2017.3.k-2018.4.k+2019.5.k}=\frac{4028k}{8074k}=\frac{2014}{4037}\)
Vậy\(P=\frac{2014}{4037}\)
Cho ba số x , y , z thỏa mãn xyz = 2017
Tính tổng D = 2017x / xy + 2017x + 2017+ y/yz+y+2017+z/zx+z+1
thay xyz=2017, ta có:
\(D=\frac{xyzx}{xy+xyzx+xyz}+\frac{y}{yz+y+xzy}+\frac{z}{xz+z+1}\)
\(D=\frac{xz}{1+xz+z}+\frac{1}{x+1+xz}+\frac{z}{xz+x+1}=1\)
\(\text{Bài làm }\)
\(\text{ Gọi xyz = 2017}\)
\(\text{Ta có:}\) \(D=\frac{xyzx}{xy+xyzx+xyz}+\frac{y}{yz+y+xzy}+\frac{z}{xz+z+1}\)
\(D=\frac{xz}{1+xz+z}+\frac{1}{x+1+xz}+\frac{z}{xz+x+1}=1\)
\(\text{# Chúc bạn học tốt #}\)
Ta có:
\(\frac{3}{x+y}=\frac{2}{y+z}=\frac{1}{z+x}\Rightarrow\frac{x+y}{3}=\frac{y+z}{2}=\frac{z+x}{1}=\frac{x+y+y+z+z+x}{3+2+1}=\frac{2\left(x+y+z\right)}{6}=\frac{x+y+z}{3}\)
\(\frac{x+y+z}{3}=\frac{x+y}{3}\Rightarrow z=0\)
Thay vào P, ta có:
\(P=\frac{2x+2y+2019z}{x+y-2020z}=\frac{2x+2y}{x+y}=\frac{2\left(x+y\right)}{x+y}=2\)
Vậy P=2
Ta có:Vì x,y,z tỉ lệ với 3,4,5 nên
\(\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
Do đó đặt:\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=3k\\y=4k\\z=5k\end{matrix}\right.\)
Thay vào P
\(\Rightarrow P=\frac{2017.3.k+2018.4.k-2019.5.k}{2017.3.k-2018.4.k+2019.5.k}=\frac{4028.k}{8074.k}=\frac{2014}{4037}\)
Vậy\(P=\frac{2014}{4037}\)