K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2018

a

B=x-4+9/x-4

B=X-4/X-4+9/X-4

B=1+9/x-4

để B thuộc z suy ra 9/x-4 thuộc z

suy ra x-4 thuộc vào Ư của 9

x-4=1 suy ra x=5 suy ra B=10

x-4=3 suy ra x=7 suy ra B=4

x-4=9 suy ra x= 13 suy ra B=2

x-4=-1 suy ra x= 3 suy ra B=-8

x-4=-3 suy ra x=1 suy ra B=-2

x-4=-9 suy ra x=-5 suy ra B=0

b

ta có :

B= 1+9/x-4

để B lớn nhất suy ra 9/x-4 lớn nhất suy ra x-4=1 suy ra x=5

suy ra Bmax=10 khi x=5

c tao có:

B=1+9/x-4

để B nhỏ nhất suy ra 9/x-4 nhỏ nhất suy ra x-4=-1 suy ra x=3

suy ra 9/x-4=-9

suy ra Bmin=-8 khi x=3

28 tháng 5 2021

\(A=\frac{x+5}{x-4}=\frac{x-4+9}{x-4}=1+\frac{9}{x-4}\)

\(a)\)

\(\text{Để A có giá trị nguyên: }\)

\(\frac{9}{x-4}\in Z\)

\(x-4\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)

\(\rightarrow x\in\left\{1;3;\pm5;7;13\right\}\)

\(b)\)

\(\text{Để A có giá trị lớn nhất: }\)

\(\frac{9}{x-4}\)\(\text{lớn nhất}\)

\(x-4=1\)

\(x=5\)

\(c)\)

\(\text{Để A đạt giá trị nhỏ nhất:}\)

\(\frac{9}{x-4}\)\(\text{nhỏ nhất}\)

\(x-4=-1\)

\(x=3\)

Cho \(A=\frac{x+5}{x-4}=\frac{x-4+9}{x-4}=\frac{x-4}{x-4}+\frac{9}{x-4}=1+\frac{9}{x-4}\left(ĐK:x\in Z,x\ne4\right)\)

Để A nguyên \(\Rightarrow9⋮x-4\)hay \(x-4\inƯ\left(9\right)\)

Ta có \(x-4\inƯ\left(9\right)\in\left\{\pm1;\pm3;\pm9\right\}\)

\(\Rightarrow x\in\left\{5;3;7;1;13;-5\right\}\)

b, Đặt \(B=\frac{9}{x-4}\)\(\Rightarrow A_{max}\)khi \(B_{max}\)

Vì \(9>0\)để B đặt GTLN \(\Rightarrow\hept{\begin{cases}x-4>0\\\left(x-4\right)_{min}\end{cases}}\)

Mà \(x\in N\)\(\Rightarrow x-4=1\)

\(\Rightarrow x=5\)

\(\Rightarrow B_{max}=\frac{9}{5-4}=9\)

\(\Rightarrow A_{max}=1+9=10\)khi \(x=5\)

c, Đặt \(B=\frac{9}{x-4}\)\(\Rightarrow A_{min}\)khi \(B_{min}\)

Vì \(9>0\)để B đạt GTNN \(\Rightarrow\hept{\begin{cases}x-4< 0\\\left(x-4\right)_{max}\end{cases}}\)

Mà \(x\in N\)\(\Rightarrow x-4\in Z\)

\(\Rightarrow x-4=-1\)

\(\Rightarrow x=3\)

\(\Rightarrow B_{min}=\frac{9}{3-4}=-9\)

\(\Rightarrow A_{min}=1+\left(-9\right)=\left(-8\right)\)khi \(x=3\)

8 tháng 8 2017

a) Ta có : A \(=\frac{4+x}{x+3}=\frac{x+3+1}{x+3}=\frac{x+3}{x+3}+\frac{1}{x+3}=1+\frac{1}{x+3}\)

ĐỂ \(A\in Z\) \(\Rightarrow\frac{1}{x+3}\in Z\Rightarrow1⋮x+3\Rightarrow x+3\inƯ\left(1\right)\)

\(Ư\left(1\right)=\left\{-1;1\right\}\)

\(x\in\left\{-4;-2\right\}\)

b)   \(B=|x+1|-2\) có GTNN

Ta có : \(|x+1|\ge0\) \(\Rightarrow|x+1|-2\ge-2\)

Để B có giá trị nhỏ nhất , dấu " = " xảy ra khi :

\(|x+1|-2=-2\)

\(\Rightarrow|x+1|=-2+2=0\)

\(\Rightarrow x+1=0\)

\(\Rightarrow x=0-1=-1\)

8 tháng 5 2016

a)Ta có ; để A thuộc N <=> (2n+5) chia hết cho (3n+1)

<=> 3(2n+5) chia hết cho (3n+1)

<=>(6n+15) chia hết cho (3n+1)

<=> (6n + 2 +13) chia hết cho (3n+1)

<=> 13 chia hết cho (3n+1)

=> (3n+1) thuộc Ư(13)

Vì n thuộc N

=> (3n+1) = 1,13

=> n = 0 hoặc 4

b)Trong phần này ta sẽ áp dung 1 tính chất sau:

a/b < (a+m)/(b+m)      với a<b

Ta thấy :

x/(x+y)  >  x/(x+y+z)

y/(y+z) > y/(x+y+z)

z/(z+x) > z/(x+y+z)

=> A > x/(x+Y+z) + y/(x+y+z) + z/(x+y+z)

=> A>1

Ta thấy :

x/x+y < (x+z)/(x+y+z)

y/y+z < (y+x)/(x+y+z)

z/z+x < (z+y)/(x+y+z)

=> A < (x+z)/(x+y+z) +(y+x)/(x+y+z) +(z+y)/(x+y+z)

=>A< 2(x+y+z)/(x+y+z)

=> A<2

=>1<A<2

=> A ko phải là số nguyên(đpcm)

a: \(A=1000-\left|x+5\right|\le1000\forall x\)

Dấu '=' xảy ra khi x=-5

b: \(\left|x-3\right|+50\ge50\forall x\)

Dấu '=' xảy ra khi x=3