Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a+\dfrac{x+1}{\sqrt{x^2-x+1}}-\dfrac{3x+3}{\sqrt{x}}=0\) có nghiệm \(x=1\)
\(\Rightarrow a+\dfrac{2}{\sqrt{1}}-\dfrac{6}{\sqrt{1}}=0\Rightarrow a=4\)
\(4+\dfrac{x+1}{\sqrt{x^2-x+1}}-\dfrac{3x+3}{\sqrt{x}}=3\left(2-\dfrac{x+1}{\sqrt{x}}\right)+\left(\dfrac{x+1}{\sqrt{x^2-x+1}}-2\right)\)
\(=-3\left(\dfrac{\left(x-1\right)^2}{\sqrt{x}\left(x+1+2\sqrt{x}\right)}\right)+\dfrac{-3\left(x-1\right)^2}{\sqrt{x^2-x+1}\left(x+1-2\sqrt{x^2-x+1}\right)}\)
Rút gọn với \(\left(x-1\right)^2\) bên ngoài rồi thay dố là được
Biết \(\lim\limits_{x\rightarrow1}\dfrac{ax^2+bx+2}{x^2-1}=\dfrac{1}{2}\); (a,b thuộc R). Tính P=a.b
- Từ điều kiện đề bài ta có: \(ax^2+bx+2\ne\pm\left(x^2-1\right)\)
Ở bài này, ta xét 2 trường hợp lớn:
1) Với \(a=0\). Ta xét 2 trường hợp nhỏ:
+ 1a) \(b\ne-2\):
Ta có: \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow1}ax^2+bx+2=\lim\limits_{x\rightarrow1}bx+2=b+2\ne0\\\lim\limits_{x\rightarrow1}x^2-1=0\end{matrix}\right.\)
\(\Rightarrow\lim\limits_{x\rightarrow1}\dfrac{ax^2+bx+2}{x^2-1}=\infty\) (loại).
+ 1b) \(b=-2\). Ta có:
\(\lim\limits_{x\rightarrow1}\dfrac{ax^2+bx+2}{x^2-1}=\lim\limits_{x\rightarrow1}\dfrac{-2\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}=\lim\limits_{x\rightarrow1}\dfrac{-2}{x+1}=\dfrac{-2}{1+1}=-1\left(loại\right)\)
2) \(a\ne0\)
- Ta xét 3 trường hợp:
+2a) \(a+b+2=0\Rightarrow b=-2-a\). Khi đó tử thức \(ax^2+bx+2\) có nghiệm là 1 và có thể viết lại thành \(ax^2+bx+2=ax^2-\left(a+2\right)x+2=a\left(x-1\right)\left(x-x_0\right)\left(1\right)\) (x0 là nghiệm còn lại của đa thức).
\(\left(1\right)\Rightarrow ax^2-\left(a+2\right)x+2=ax^2-a\left(1+x_0\right)x+ax_0\)
\(\Rightarrow\left\{{}\begin{matrix}a+2=a\left(1+x_0\right)\\2=ax_0\end{matrix}\right.\Rightarrow x_0=\dfrac{2}{a}\)
Vậy \(ax^2+bx+2=a\left(x-1\right)\left(x-\dfrac{2}{a}\right)=\left(x-1\right)\left(ax-2\right)\), với \(b=-a-2\)
\(\lim\limits_{x\rightarrow1}\dfrac{ax^2+bx+2}{x^2-1}=\lim\limits_{x\rightarrow1}\dfrac{ax-2}{x+1}=\dfrac{a-2}{2}=\dfrac{1}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}a=3\\b=-5\end{matrix}\right.\) \(\Rightarrow P=a.b=3.\left(-5\right)=-15\)
+2b) \(a-b+2=0\Rightarrow b=a+2\). Khi đó tử thức \(ax^2+bx+2\) có một nghiệm là -1 và có thể được viết lại thành: \(ax^2+bx+2=a\left(x+1\right)\left(x-x_0\right)\left(2\right)\) (x0 là nghiệm còn lại của tử thức).
\(\left(2\right)\Rightarrow ax^2+\left(a+2\right)x+2=a\left(x+1\right)\left(x-x_0\right)\)
\(\Rightarrow ax^2+\left(a+2\right)x+2=ax^2+a\left(1-x_0\right)-ax_0\)
\(\Rightarrow\left\{{}\begin{matrix}a+2=a\left(1-x_0\right)\\2=-ax_0\end{matrix}\right.\Rightarrow x_0=\dfrac{-2}{a}\)
Vậy \(ax^2+bx+2=\left(x+1\right)\left(ax+2\right)\)
\(\lim\limits_{x\rightarrow1}\dfrac{ax^2+bx+2}{x^2-1}=\lim\limits_{x\rightarrow1}\dfrac{ax+2}{x-1}\)
Ta có: \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow1}ax+2=a+2\ne0\\\lim\limits_{x\rightarrow1}x-1=0\end{matrix}\right.\)
\(\Rightarrow\lim\limits_{x\rightarrow1}\dfrac{ax+2}{x-1}=\infty\) (loại)
+2c) Tử thức \(ax^2+bx+2\) không có nghiệm là 1 và -1. Làm tương tự như trường hợp 2b) (từ khúc tính lim).
Vậy \(P=-15\)
Bỏ trường hợp 2c, sửa 2b:
-Tử thức \(ax^2+bx+2\) không có nghiệm là 1.
Ta có: \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow1}ax^2+bx+2=a+b+2\ne0\\\lim\limits_{x\rightarrow1}x^2-1=0\end{matrix}\right.\)
\(\Rightarrow\lim\limits_{x\rightarrow1}\dfrac{ax^2+bx+2}{x^2-1}=\infty\) (loại).
\(a=\lim\limits_{x\rightarrow1}\dfrac{\left(x-1\right)\left(x^2-2x-2\right)}{\left(x-1\right)\left(x-3\right)}=\lim\limits_{x\rightarrow1}\dfrac{x^2-2x-2}{x-3}=\dfrac{3}{2}\)
Câu b bạn coi lại đề, là \(x\rightarrow-1^-\) hay \(x\rightarrow1^-\) (đúng như đề thì ko phải dạng vô định, cứ thay số rồi bấm máy)
\(c=\lim\limits_{x\rightarrow3}\dfrac{\left(x-3\right)}{\left(x-3\right)\left(x-1\right)\left(\sqrt[3]{\left(x+5\right)^2}+2\sqrt[3]{x+5}+4\right)}\)
\(=\lim\limits_{x\rightarrow3}\dfrac{1}{\left(x-1\right)\left(\sqrt[3]{\left(x+5\right)^2}+2\sqrt[3]{x+5}+4\right)}=\dfrac{1}{2.\left(4+4+4\right)}=...\)
a/ \(=\lim\limits_{x\rightarrow1}\dfrac{\left(x-1\right)\left(x-1+\sqrt{3}\right)\left(x-1-\sqrt{3}\right)}{\left(x-1\right)\left(x-3\right)}=\lim\limits_{x\rightarrow1}\dfrac{\left(x-1+\sqrt{3}\right)\left(x-1-\sqrt{3}\right)}{x-3}=....\)
Từ 2 câu kia lát tui làm, ăn cơm đã :D
1.
\(\overrightarrow{MN}=\overrightarrow{MB'}+\overrightarrow{B'B}+\overrightarrow{BN}=\dfrac{1}{2}\overrightarrow{AB}-\overrightarrow{AA'}+\dfrac{1}{2}\overrightarrow{AD}\)
\(\overrightarrow{AC'}=\overrightarrow{AB'}+\overrightarrow{B'C'}=\overrightarrow{AB}+\overrightarrow{AA'}+\overrightarrow{AD}\)
\(\overrightarrow{MN}.\overrightarrow{AC'}=\left(\dfrac{1}{2}\overrightarrow{AB}-\overrightarrow{AA'}+\dfrac{1}{2}\overrightarrow{AD}\right)\left(\overrightarrow{AB}+\overrightarrow{AA'}+\overrightarrow{AD}\right)\)
\(=\dfrac{1}{2}AB^2-AA'^2+\dfrac{1}{2}AD^2=0\)
\(\Rightarrow MN\perp AC'\)
b.
\(\left\{{}\begin{matrix}AA'\perp BD\\BD\perp AC\end{matrix}\right.\) \(\Rightarrow BD\perp\left(ACC'A'\right)\Rightarrow BD\perp AC'\)
Tương tự: \(A'B\perp\left(ADC'B'\right)\Rightarrow A'B\perp AC'\)
\(\Rightarrow AC'\perp\left(A'BD\right)\)
2.
Phương trình \(x^3-3x+2=0\Leftrightarrow\left(x-1\right)^2\left(x+2\right)=0\) có nghiệm kép \(x=1\)
Nên giới hạn đã cho hữu hạn khi và chỉ khi phương trình: \(2\sqrt{1+ax^2}-bx-1=0\) có ít nhất 2 nghiệm \(x=1\) (tức là nghiệm bội 2 trở lên)
Thay \(x=1\) vào:
\(\Rightarrow2\sqrt{1+a}-b-1=0\Rightarrow2\sqrt{1+a}=b+1\)
\(\Rightarrow4\left(a+1\right)=b^2+2b+1\Rightarrow4a=b^2+2b-3\)
Khi đó:
\(\sqrt{4+4ax^2}-bx-1=0\Leftrightarrow\sqrt{4+\left(b^2+2b-3\right)x^2}-bx-1=0\)
\(\Leftrightarrow\sqrt{4+\left(b^2+2b-3\right)x^2}=bx+1\)
\(\Rightarrow4+\left(b^2+2b-3\right)x^2=b^2x^2+2bx+1\)
\(\Rightarrow\left(2b-3\right)x^2-2bx+3=0\)
\(\Rightarrow2bx^2-2bx-3x^2+3=0\)
\(\Rightarrow2bx\left(x-1\right)-\left(x-1\right)\left(3x+3\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(2bx-3x-3\right)=0\Rightarrow\left[{}\begin{matrix}x=1\\\left(2b-3\right)x=3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{3}{2b-3}\end{matrix}\right.\) \(\Rightarrow\dfrac{3}{2b-3}=1\Rightarrow b=3\Rightarrow a=3\)
\(c=\lim\limits_{x\rightarrow1}\dfrac{2\sqrt{1+3x^2}-3x-1}{x^3-3x+2}=\dfrac{1}{8}\)
\(\lim\limits_{x\rightarrow1}\dfrac{f\left(x\right)-2x+1}{x-1}=3\rightarrow\lim\limits_{x\rightarrow1}\left(f\left(x\right)-2x+1\right)=0\\ \rightarrow\lim\limits_{x\rightarrow1}f\left(x\right)=1\)
\(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{3f\left(x\right)+1}-x-1}{\sqrt{4x+5}-3x-2}=\dfrac{\sqrt{3.1+1}-1-1}{\sqrt{4.1+5}-3.1-2}=0\)
1/ \(\lim\limits_{x\rightarrow0^-}\left(\dfrac{x-2}{x^3}\right)=\lim\limits_{x\rightarrow0^-}\dfrac{2-x}{-x^3}=\dfrac{2}{0}=+\infty\)
2/ \(\lim\limits_{x\rightarrow1^+}\dfrac{\left(x^3-x^2\right)^{\dfrac{1}{2}}}{\left(x-1\right)^{\dfrac{1}{2}}+1-x}=\lim\limits_{x\rightarrow1^+}\dfrac{\dfrac{1}{2}\left(x^3-x^2\right)^{-\dfrac{1}{2}}.\left(3x^2-2x\right)}{\dfrac{1}{2}\left(x-1\right)^{-\dfrac{1}{2}}-1}=0\)
3/ \(\lim\limits_{x\rightarrow1^+}\dfrac{1-\left(x^2+x+1\right)}{x^3-1}=\dfrac{1-3}{0}=-\infty\)
4/ \(\lim\limits_{x\rightarrow-\infty}\left(-\infty-\sqrt[3]{1+\infty}\right)=-\left(\infty+\infty\right)=-\infty?\) Cái này ko chắc :v
Trình bày công thức các thứ khá dài nên tôi thử nói hướng, nếu bạn hiểu đc và làm đc thì ok còn nếu k hiểu thì bảo mình, mình làm full cho
Bây giờ phân tích mẫu trước, ra (x-1)2(x+2)
Để cái lim này nó ra đc 1 số thực thì tử và mẫu cùng phải triệt tiêu (x-1)2 đi, tức là tử phải chia hết (x-1)2, tức là tử cũng phải có nghiệm kép x=1
Do đó \(\left\{{}\begin{matrix}f\left(1\right)=0\\f'\left(1\right)=0\end{matrix}\right.\)
Mình cảm ơn bạn ạ.
Tại vì thật ra mình cũng biết là cái tử nó phải bằng 0 rồi, nhưng cho bằng 0 xong mình không biết tính \(a^2+b^2\) thế nào.
Mong bạn giúp đỡ ạ !