Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo câu trả lời của mình tại :
Câu hỏi của Nguyễn Tiến Duy - Toán lớp 7 - Học trực tuyến OLM
\(P=\left|x-28\right|+\left|x-3\right|+\left|x-2020\right|\)
\(=\left(\left|x-3\right|+\left|x-2020\right|\right)+\left|x-28\right|\)
Đặt \(A=\left|x-3\right|+\left|x-2020\right|\)
Ta có: \(A=\left|x-3\right|+\left|x-2020\right|\)
\(=\left|x-3\right|+\left|2020-x\right|\ge\left|x-3+2020-x\right|=2017\left(1\right)\)
Dấu"="xảy ra \(\Leftrightarrow\left(x-3\right)\left(2020-x\right)\ge0\)
\(\Leftrightarrow\hept{\begin{cases}x-3\ge0\\2020-x\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}x-3< 0\\2020-x< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge3\\x\le2020\end{cases}}\)hoặc \(\hept{\begin{cases}x< 3\\x>2020\end{cases}\left(loai\right)}\)
\(\Leftrightarrow3\le x\le2020\)
Ta có: \(\left|x-28\right|\ge0;\forall x\left(2\right)\)
Dấu"="xảy ra \(\Leftrightarrow\left|x-28\right|=0\)
\(\Leftrightarrow x=28\)
Từ (1) và (2)\(\Rightarrow A+\left|x-28\right|\ge2017\)
Hay \(P\ge2017\)
Dấu"="xảy ra \(\Leftrightarrow\hept{\begin{cases}3\le x\le2020\\x=28\end{cases}}\Leftrightarrow x=28\)
Vậy \(P_{min}=2017\Leftrightarrow x=28\)
Điều kiện \(x\ne\frac{-2}{3},x\in Z\)
M=\(\frac{2019x-2020}{3x+2}=\frac{673\left(3x+2\right)-3366}{3x+2}=673-\frac{3366}{3x+2}\)
Với \(\hept{\begin{cases}x\in Z\\3x+2>0\end{cases}}\Rightarrow\hept{\begin{cases}x\in Z\\x>\frac{-2}{3}\end{cases}}\Rightarrow\frac{3366}{3x+2}>0\Rightarrow M>0\)
Với \(\hept{\begin{cases}x\in Z\\3x+2< 0\end{cases}}\Rightarrow\hept{\begin{cases}x\in Z\\x< \frac{-2}{3}\end{cases}}\)
\(\Rightarrow\)Phân số \(\frac{3366}{3x+2}\)nhỏ nhất\(\Leftrightarrow\)mẫu nguyên âm lớn nhất
\(\Leftrightarrow3x+2=-1\)
\(\Leftrightarrow\)\(3x=-3\)
\(\Leftrightarrow x=-1\)(Thảo mãn điều kiện)
Với x=-1 thì M=4039
Vậy Min M=4039\(\Leftrightarrow x=-1\)
BĐT: \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)
\(\Rightarrow m=\left|x-1\right|+\left|x-5\right|\)
\(=\left|x-1\right|+\left|-\left(x-5\right)\right|\)
\(=\left|x-1\right|+\left|5-x\right|\)
Theo BĐT ta có: \(m=\left|x-1\right|+\left|5-x\right|\ge\left|x-1+5-x\right|=4\)
Vậy: \(m_{min}=4\)
Vì \(\hept{\begin{cases}\left(x+5\right)^{2020}=x+\left(5^{1010}\right)^2≥0∀x\\\left|y-2021\right|≥0∀y\end{cases}}\Rightarrow A=\left(x+5\right)^{2020}+\left|y-2021\right|+2020\ge2020∀x,y\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+5=0\\y-2021=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=2021\end{cases}}\)
Ta có:\(\left(x+5\right)^{20}\ge0\)
\(\left|y-2021\right|\ge0\)
\(\Rightarrow A=\left(x+5\right)^{2020}+\left|y-2021\right|+2020\le2020\)
Dấu bằng xảy ra khi \(x+5=0\Rightarrow x=-5\) ; \(y-2021=0\Rightarrow y=2021\)
Vậy, GTNN của A =2020 khi x=-5; y=2021