K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2018

a)ĐKXĐ:

\(x+1\ne0\Leftrightarrow x\ne-1\)

\(x-1\ne0\Leftrightarrow x\ne1\)

b) \(A=\left(\dfrac{x}{x+1}+\dfrac{1}{x-1}\right):\left(\dfrac{2x+2}{x-1}-\dfrac{4x}{x^2-1}\right)\)

\(=\left[\dfrac{x\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}+\dfrac{x+1}{\left(x-1\right)\left(x+1\right)}\right]:\left[\dfrac{2\left(x+1\right)}{x-1}-\dfrac{4x}{x^2-1}\right]\)

\(=\left[\dfrac{x\left(x-1\right)+\left(x+1\right)}{x^2-1}\right]:\left[\dfrac{2\left(x+1\right)^2}{x^2-1}-\dfrac{4x}{x^2-1}\right]\)

\(=\left(\dfrac{x^2-x+x+1}{x^2-1}\right):\left(\dfrac{2\left(x^2+2x+1\right)-4x}{x^2-1}\right)\)

\(=\dfrac{x^2+1}{x^2-1}:\left(\dfrac{2x^2+4x+2-4x}{x^2-1}\right)\)

\(=\dfrac{x^2+1}{x^2-1}:\dfrac{2x^2+2}{x^2-1}\)

\(=\dfrac{x^2+1}{x^2-1}.\dfrac{x^2-1}{2x^2+2}\)

\(=\dfrac{x^2+1}{x^2-1}.\dfrac{x^2-1}{2\left(x^2+1\right)}\)

\(=\dfrac{1}{2}\)

Vậy với \(x\ne\pm1\) thì A không phụ thuộc vào biến x

3 tháng 1 2019

a) Phân thức B xác định \(\Leftrightarrow\hept{\begin{cases}2x-2\ne0\\x^2-1\ne0\\2x+2\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne\left\{\pm1\right\}\\x\ne-1\end{cases}\Leftrightarrow}x\ne\left\{\pm1\right\}}\)

b) \(B=\left(\frac{x+1}{2x-2}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right)\cdot\frac{4x^2-4}{5}\)

\(B=\left[\frac{\left(x+1\right)^2}{2\left(x-1\right)\left(x+1\right)}+\frac{3\cdot2}{2\left(x-1\right)\left(x+1\right)}-\frac{\left(x+3\right)\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}\right]\cdot\frac{\left(2x\right)^2-2^2}{5}\)

\(B=\frac{x^2+2x+1+6-x^2-2x+3}{2\left(x-1\right)\left(x+1\right)}\cdot\frac{\left(2x-2\right)\left(2x+2\right)}{5}\)

\(B=\frac{10\cdot2\left(x-1\right)\cdot2\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)\cdot5}\)

\(B=\frac{40\left(x-1\right)\left(x+1\right)}{10\left(x-1\right)\left(x+1\right)}\)

\(B=4\)

Vậy với mọi giá trị của x thì B luôn bằng 4

Vậy giá trị của B không phụ thuộc vào biến ( đpcm )

3 tháng 1 2019

\(Giải:\)

\(ĐKXĐ:x\ne\pm1\)
\(B=\left[\frac{x+1}{2x-2}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right]=\left[\frac{x+1}{2x-2}+\frac{12}{4x^2-4}-\frac{x+3}{2x+2}\right]\)

\(=\left[\frac{x+1}{2x-2}+\frac{12}{\left(2x+2\right)\left(2x-2\right)}-\frac{x+3}{2x+2}\right]\)

\(=\left[\frac{\left(x+1\right)\left(2x+2\right)}{\left(2x+2\right)\left(2x-2\right)}+\frac{12}{\left(2x+2\right)\left(2x-2\right)}-\frac{\left(x+3\right)\left(2x-2\right)}{\left(2x-2\right)\left(2x+2\right)}\right]\)

\(=\frac{2x^2+4x+14-2x^2+2x-6x+6}{\left(2x-2\right)\left(2x+2\right)}\)

\(=\frac{6}{\left(2x-2\right)\left(2x+2\right)}\)

21 tháng 4 2017

a) 2x−2=2(x−1)≠0 khi x−1≠0 hay x≠1

x2−1=(x−1)(x+1)≠0 khi x−1≠0x+1≠0

hay x≠1x≠−1

2x+2=2(x+1)≠0 khi x+1≠0 hay x≠−1

Do đó điều kiện để giá trị của biểu thức được xác định là x≠−1,x≠1

b) Để chứng minh biểu thức không phục thuộc vào biến x ta phải chứng tỏ rằng có thể biến đổi biểu thức này thành một hằng số.

Thật vậy:

18 tháng 7 2017

a, \(2x-2\ne0\) khi \(2x\ne2\Leftrightarrow x\ne1\)

\(x^2-1=\left(x+1\right)\left(x-1\right)\ne0\) khi \(x+1\ne0\)\(x-1\Leftrightarrow x\ne-1\)\(x\ne1\)

\(2x+2=2\left(x+1\right)\ne0\) khi \(x\ne-1\)

điều kiên của x để giá trị của biểu thức được xác định là : \(x\ne-1\)\(x\ne1\)

b, \(\left(\dfrac{x+1}{2x-2}\dfrac{3}{x^2-1}-\dfrac{x+3}{2x+2}\right).\dfrac{4x^2-4}{5}\)

= \(\left[\dfrac{x+1}{2\left(x-1\right)}+\dfrac{3}{\left(x+1\right)\left(x-1\right)}+\dfrac{-\left(x+3\right)}{2\left(x+1\right)}\right].\dfrac{4\left(x^2-1\right)}{5}\)

=\(\dfrac{\left(x+1\right)\left(x+1\right)+3.2-\left(x+3\right)\left(x-1\right)}{2\left(x+1\right)\left(x-1\right)}.\dfrac{4\left(x+1\right)\left(x-1\right)}{5}\)

= \(\dfrac{x^2+2x+1+6-x^2+x-3x+3}{2\left(x+1\right)\left(x-1\right)}.\dfrac{4\left(x+1\right)\left(x-1\right)}{5}\)

= \(\dfrac{10}{2\left(x+1\right)\left(x-1\right)}.\dfrac{4\left(x+1\right)\left(x-1\right)}{5}\)

= \(\dfrac{40\left(x+1\right)\left(x-1\right)}{10\left(x+1\right)\left(x-1\right)}\)

Vậy giá trị biểu thức được xác định thì nó không phụ thuộc vào giá trị của biến X

24 tháng 6 2017

Phân thức đại số

Phân thức đại số

28 tháng 6 2023

Xem lại biểu thức P.

28 tháng 6 2023

loading...

Mình phải đi ăn nên chiều mình làm nốt câu d nhé

13 tháng 1 2016

a/. ĐKXĐ : (x-1)(x+1) # 0 => x # 1 hay x # -1

b/. \(B=\left[\frac{\left(x+1\right)^2}{2\left(x-1\right)\left(x+1\right)}+\frac{3.2}{2\left(x-1\right)\left(x+1\right)}-\frac{\left(x+3\right)\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)}\right].\frac{4\left(x-1\right)\left(x+1\right)}{5}\)

\(B=\frac{x^2+2x+1+6-x^2-4x-3}{2\left(x-1\right)\left(x+1\right)}.\frac{4\left(x-1\right)\left(x+1\right)}{5}\)

\(B=\frac{2\left(4-2x\right)}{5}\)

Em xem lại đè nhé. Đề như vậy thì sẽ ko rút gọn đc hết x trên tử. nên B vẫn phụ thuộc vào biến x. 

 

8 tháng 12 2016

chao cac bạn và a chi nếu đề sửa lai vây thi minh làm thế nào ( x+1/2x-2 + 3/x^2+1 - x+3/2x+1 )* (4x^2 -1)/5

11 tháng 1 2021

[2x-2=0=>x=1

x-1=0=>x=1

x+1=0=>x=-1

5=0=>x=5