Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có: \(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\)
\(=2-1+1-\frac{1}{2}+...+\frac{1}{99}-\frac{1}{100}\)
\(=2-\frac{1}{100}=\frac{199}{100}\)
Có: \(1+2+3+...+100=\frac{101\left(100-1+1\right)}{2}=5050\)
\(\Rightarrow A=\frac{5050.\frac{-17}{60}.0}{\frac{199}{100}}=0\)
1. A = 75(42004 + 42003 +...+ 42 + 4 + 1) + 25
A = 25 . [3 . (42004 + 42003 +...+ 42 + 4 + 1) + 1]
A = 25 . (3 . 42004 + 3 . 42003 +...+ 3 . 42 + 3 . 4 + 3 + 1)
A = 25 . (3 . 42004 + 3 . 42003 +...+ 3 . 42 + 3 . 4 + 4)
A = 25 . 4 . (3 . 42003 + 3 . 42002 +...+ 3 . 4 + 3 + 1)
A =100 . (3 . 42003 + 3 . 42002 +...+ 3 . 4 + 3 + 1) \(⋮\) 100
=>\(-B=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)...\left(1-\frac{1}{2012}\right)\)
=\(\frac{1}{2}.\frac{2}{3}...\frac{2011}{2012}=\frac{1}{2012}\)
A=[(1+2+...+100) x (1/2 - 1/3 - 1/4 - 1/5) x (2,4x42 - 21x4,8)] / 1+1/2+1/3+...+1/100
= [(1+2+3+...+100) x (1/2 - 1/3 - 1/4-1/5) x (2,4x2x21 - 21x2x 4,8)] / 1+1/2+1/3+...+1/100
=[(1+2+3+...+100) x (1/2 - 1/3 - 1/4 - 1/5) x 0] / 1+1/2+1/3+...+1/100
=0 / 1+1/2+1/3+...+1/100 = 0
câu g)
\(G=\left(\frac{1}{4}-1\right)\left(\frac{1}{9}-1\right)\left(\frac{1}{16}-1\right)...\left(\frac{1}{121}-1\right).\)
\(=\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{15}{16}...\cdot\frac{120}{121}\)
\(=\frac{3.\left(2.4\right).\left(3.5\right)...\left(10.12\right)}{2.2.3.3.4.4.5.5....11.11}\)
\(=\frac{12}{3}=4\)
a)
\(\begin{array}{l}A = \left( {2 + \frac{1}{3} - \frac{2}{5}} \right) - \left( {7 - \frac{3}{5} - \frac{4}{3}} \right) - \left( {\frac{1}{5} + \frac{5}{3} - 4} \right).\\A = \left( {\frac{{30}}{{15}} + \frac{5}{{15}} - \frac{6}{{15}}} \right) - \left( {\frac{{105}}{{15}} - \frac{9}{{15}} - \frac{{20}}{{15}}} \right) - \left( {\frac{3}{{15}} + \frac{{25}}{{15}} - \frac{{60}}{{15}}} \right)\\A = \frac{{29}}{{15}} - \frac{{76}}{{15}} - \left( {\frac{{ - 32}}{{15}}} \right)\\A = \frac{{29}}{{15}} - \frac{{76}}{{15}} + \frac{{32}}{{15}}\\A = \frac{{ - 15}}{{15}}\\A = - 1\end{array}\)
b)
\(\begin{array}{l}A = \left( {2 + \frac{1}{3} - \frac{2}{5}} \right) - \left( {7 - \frac{3}{5} - \frac{4}{3}} \right) - \left( {\frac{1}{5} + \frac{5}{3} - 4} \right)\\A = 2 + \frac{1}{3} - \frac{2}{5} - 7 + \frac{3}{5} + \frac{4}{3} - \frac{1}{5} - \frac{5}{3} + 4\\A = \left( {2 - 7 + 4} \right) + \left( {\frac{1}{3} + \frac{4}{3} - \frac{5}{3}} \right) + \left( { - \frac{2}{5} + \frac{3}{5} - \frac{1}{5}} \right)\\A = - 1 + 0 + 0 = - 1\end{array}\)
\(A=\dfrac{-1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+...+\dfrac{1}{3^{100}}\)
\(\Rightarrow\dfrac{1}{3}A=\dfrac{-1}{3^2}+\dfrac{1}{3^3}-\dfrac{1}{3^4}+...-\dfrac{1}{3^{100}}+\dfrac{1}{3^{101}}\)
Cộng vế với vế:
\(A+\dfrac{1}{3}A=\dfrac{-1}{3}-\dfrac{1}{3^2}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{100}}-\dfrac{1}{3^{100}}+\dfrac{1}{3^{101}}\)
\(\Rightarrow\dfrac{4}{3}A=\dfrac{-1}{3}+\dfrac{1}{3^{101}}\)
\(\Rightarrow A=\dfrac{1}{4}\left(\dfrac{1}{3^{100}}-1\right)\)
Do \(\dfrac{1}{3^{100}}< \dfrac{1}{3}< 1\Rightarrow A< 0\)
\(\Rightarrow\left|A\right|=-A=-\dfrac{1}{4}\left(\dfrac{1}{3^{100}}-1\right)=\dfrac{1}{4}\left(1-\dfrac{1}{3^{100}}\right)\)
\(\Rightarrow B=4\left|A\right|+\dfrac{1}{3^{100}}=1-\dfrac{1}{3^{100}}+\dfrac{1}{3^{100}}=1\)