Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(a^2+a^2\left(a+1\right)^2+\left(a+1\right)^2=a^2+\left(a^2+a\right)^2+a^2+2a+1\)
\(=\left(a^2+a\right)^2+2\left(a^2+a\right)+1=\left(a^2+a+1\right)^2\)
b.
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+\dfrac{1}{y}\right)^2-\dfrac{x}{y}=3\\x+\dfrac{1}{y}+\dfrac{x}{y}=3\end{matrix}\right.\)
\(\Rightarrow\left(x+\dfrac{1}{y}\right)^2+x+\dfrac{1}{y}=6\)
\(\Rightarrow\left[{}\begin{matrix}x+\dfrac{1}{y}=2\Rightarrow\dfrac{x}{y}=1\\x+\dfrac{1}{y}=-3\Rightarrow\dfrac{x}{y}=6\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}x+\dfrac{1}{y}=2\\\dfrac{x}{y}=1\end{matrix}\right.\) \(\Rightarrow...\)
Cho hình bình hành ABCD,cạnh AB=a.AD=b .Tính AC^2+BD^2 theo a và b
giúp em với ạ
\(A=\sqrt{2012^2+2012^2.2013^2+2013^2}\Rightarrow A^2=2012^2+2012^2.2013^2+2013^2=2012^2.2013^2+\left(2013-1\right)^2+2013^2=\left(2012.2013\right)^2+2013^2-2.2013+1+2013=\left(2012.2013\right)^2+2.2013^2-2.2013+1=\left(2012.2013\right)^2+2.2013\left(2013-1\right)+1=\left(2012.2013\right)^2+2.2012.2013.1+1=\left(2012.2013+1\right)^2\Rightarrow A=2012.2013+1\)Vậy A là một số tự nhiên
ĐKXĐ: \(x-2013\ge0\Leftrightarrow x\ge2013\)
Ta có:
\(A=\sqrt{x-2013-2\sqrt{x-2013}+1}+\sqrt{x-2013-90\sqrt{x-2013}+2025}\)
\(=\sqrt{\left(\sqrt{x-2013}-1\right)^2}+\sqrt{\left(\sqrt{x-2013}-45\right)^2}\)
\(=\left|\sqrt{x-2013}-1\right|+\left|\sqrt{x-2013}-45\right|\)
\(=\left|\sqrt{x-2013}-1\right|+\left|45-\sqrt{x-2013}\right|\)
\(\ge\left|\sqrt{x-2013}-1+45-\sqrt{x-2013}\right|\)
\(=\left|-1+45\right|=\left|44\right|=44\)
Vậy GTNN của A là 44, đạt được khi và chỉ khi \(\left(\sqrt{x-2013}-1\right)\left(45-\sqrt{x-2013}\right)\ge0\)
\(\Leftrightarrow1\le\sqrt{x-2013}\le45\)
\(\Leftrightarrow1\le x-2013\le2025\)
\(\Leftrightarrow2014\le x\le4038\left(tm\right)\)
Lời giải:
$A=|1-\sqrt{2012}|\sqrt{2012+2\sqrt{2012}+1}$
$=|1-\sqrt{2012}|\sqrt{(\sqrt{2012}+1)^2}$
$=|1-\sqrt{2012}|.|\sqrt{2012}+1|$
$=|(1-\sqrt{2012})(1+\sqrt{2012})|=|1-2012|=2011$
Đặt t= 2012
Thay vào ta được :\(\sqrt{t^2+t^2\left(t+1\right)^2+\left(t+1\right)^2}=\sqrt{t^2+t^4+2t^3+t^2+t^2+2t+1}\)
=\(\sqrt{t^4+t^2+1+2\left(t^3+t^2+t\right)}=\sqrt{\left(t^2+t+1\right)^2}=t^2+t+1\)
= \(2012^2+2012+1\)là số tự nhiên (đpcm)
minh bik lam ne
đặt a =2012
\(\Rightarrow A=\sqrt{a^2+a^2\left[a+1\right]^2+\left\{a+1\right\}^2}\)
\(=\sqrt{a^2+a^4+2a^3+a^2+2a+1}\)
\(=\sqrt{a^4+2a^3+3a^2+2a+1}\)
\(=\sqrt{\left[a^2+a+1\right]^2}\)
\(=a^2+a+1\)
\(=2012^2+2012+1\) là 1 số tự nhiên
\(A=\sqrt{2012^2+2012^2.2013^2+2013^2}\)
\(=\sqrt{2012^2+\left(2012.2013\right)^2+2013^2}\)
\(=2012+2012.2013+2013\)
Vậy A là một số tự nhiên
P/s: Mình nghĩ thế, không chắc!
\(A=\sqrt{2012^2+2012^2.2013^2+2013^2}\)
\(=\sqrt{\left(2013-1\right)^2+2012^2.2013^2+2013^2}\)
\(=\sqrt{2.2013^2-2.2013+1+2012^2.2013^2}\)
\(=\sqrt{2.2013.\left(2013-1\right)+1+2012^2.2013^2}\)
\(=\sqrt{2012^2.2013^2+2.2013.2012+1}=\sqrt{\left(2012.2013+1\right)^2}=2012.2013+1\)