Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(đkxđ\Leftrightarrow x\ge\sqrt{x^2-4x+4}\)\(\Rightarrow x\ge|x-2|\Rightarrow x\ge0\)
\(A=\sqrt{x-\sqrt{x^2-4x+4}}.\)
\(=\sqrt{x-\sqrt{\left(x-2\right)^2}}\)
\(=\sqrt{x-|x-2|}=0\)
Nếu \(x\ge2\Rightarrow A=\sqrt{x-\left(x-2\right)}=\sqrt{x-x+2}=\sqrt{2}\)
Nếu \(0\le x< 2\Rightarrow A=\sqrt{x-\left(2-x\right)}=\sqrt{2x-2}\)
Sửa đề: \(A=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}}{\sqrt{x}+2}\right):\dfrac{2\sqrt{x}}{x-4}\)
ĐKXĐ: x>0; x<>4
\(A=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)+\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{2\sqrt{x}}\)
\(=\dfrac{x+2\sqrt{x}+x-2\sqrt{x}}{2\sqrt{x}}=\dfrac{2x}{2\sqrt{x}}=\sqrt{x}\)
Điều kiện: x>2, \(x\ne4\)
\(A=\left(\dfrac{\sqrt{x}}{\sqrt{x-2}}+\dfrac{\sqrt{x}}{\sqrt{x+2}}\right):\dfrac{2\sqrt{x}}{x-4}\\ \Rightarrow A=\sqrt{x}\cdot\dfrac{\sqrt{x+2}+\sqrt{x-2}}{\sqrt{x^2-4}}\cdot\dfrac{x-4}{2\sqrt{x}}\\ \Rightarrow A=\dfrac{\left(x-4\right)\left(\sqrt{x+2}+\sqrt{x-2}\right)}{2\sqrt{x^2-4}}\)
a) ĐKXĐ : \(0\le x\ne4\)
b) \(A=\left(\frac{\sqrt{x}}{\sqrt{x}+2}+\frac{\sqrt{x}}{2-\sqrt{x}}+\frac{4\sqrt{x}-1}{x-4}\right):\frac{1}{x-4}\)
\(=\left[\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{4\sqrt{x}-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right].\left(x-4\right)\)
\(=\frac{x-2\sqrt{x}-x-2\sqrt{x}+4\sqrt{x}-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)\)
\(=\frac{-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)=-1\)
\(A=\left[\frac{\left(\sqrt{x}-2\right)\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{4\sqrt{x}-1}{x-4}\right]:\frac{1}{x-4}\)
\(=\frac{x-2\sqrt{x}-x-2\sqrt{x}+4\sqrt{x}-1}{x-4}.\left(x-4\right)\)=\(=\frac{-1}{x-4}.\left(x-4\right)=-1\)
Vậy giá trị của A thỏa mãn mọi x và rút gọn lại còn -1
a, \(P=\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}}{\sqrt{x}+2}+\dfrac{2+5\sqrt{x}}{4-x}\)ĐK : \(x\ge0;x\ne4\)
\(=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)+2\sqrt{x}\left(\sqrt{x}-2\right)-2-5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{x+3\sqrt{x}+2+2x-4\sqrt{x}-2-5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{3x-6\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{3\sqrt{x}}{\sqrt{x}+2}\)
b, Ta có :
\(P=2\Rightarrow\dfrac{3\sqrt{x}}{\sqrt{x}+2}=2\Rightarrow3\sqrt{x}=2\sqrt{x}+4\Leftrightarrow\sqrt{x}=4\Leftrightarrow x=16\)( tmđk )
Vậy P = 2 thì x = 16
a: ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x\notin\left\{1;4\right\}\end{matrix}\right.\)
\(A=\left(\dfrac{1}{x-4}+\dfrac{1}{\sqrt{x}+2}\right):\dfrac{\sqrt{x}-1}{x+2\sqrt{x}}\)
\(=\left(\dfrac{1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{1}{\sqrt{x}+2}\right)\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\sqrt{x}-1}\)
\(=\dfrac{1+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\sqrt{x}-1}\)
\(=\dfrac{\sqrt{x}-1}{\sqrt{x}-2}\cdot\dfrac{\sqrt{x}}{\sqrt{x}-1}=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)
b: Để A là số nguyên thì \(\sqrt{x}⋮\sqrt{x}-2\)
=>\(\sqrt{x}-2+2⋮\sqrt{x}-2\)
=>\(\sqrt{x}-2\inƯ\left(2\right)\)
=>\(\sqrt{x}-2\in\left\{1;-1;2;-2\right\}\)
=>\(\sqrt{x}\in\left\{3;1;4;0\right\}\)
=>\(x\in\left\{9;1;16;0\right\}\)
Kết hợp ĐKXĐ, ta được: \(x\in\left\{9;16\right\}\)
c: A<0
=>\(\dfrac{\sqrt{x}}{\sqrt{x}-2}< 0\)
=>\(\sqrt{x}-2< 0\)
=>\(\sqrt{x}< 2\)
=>0<=x<4
Kết hợp ĐKXĐ, ta được: 0<x<4 và x<>1
\(a,DKXD:x\ge0\)
\(b,A=\sqrt{x-\sqrt{x^2-4x+4}}\)
\(=\sqrt{x-\sqrt{\left(x-2\right)^2}}\)
\(=\sqrt{x-\left|x-2\right|}\)
\(=\sqrt{x-\left(x-2\right)}\)
\(=\sqrt{x-x+2}\)
\(=\sqrt{2}\)