K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2020

\(ĐKXĐ:x\ne-1\)

\(A=\frac{x}{x+1}-\frac{3-3x}{x^2-x+1}+\frac{x+4}{x^3+1}\)

\(=\frac{x\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{\left(x+1\right)\left(3x-3\right)}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{x+4}{x^3+1}\)

\(=\frac{x^3-x^2+x}{x^3+1}+\frac{3x^2-3}{x^3+1}+\frac{x+4}{x^3+1}\)

\(=\frac{x^3-x^2+x+3x^2-3+x+4}{x^3+1}\)

\(=\frac{x^3+2x^2+2x+1}{x^3+1}\)

\(=\frac{\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\frac{\left(x+1\right)\left(x^2+x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\frac{x^2+x+1}{x^2-x+1}\)

Ta có: \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)

và \(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)

\(\Rightarrow\frac{x^2+x+1}{x^2-x+1}>0\forall xt/m\)(đpcm)

21 tháng 1 2023

\(a,A=\dfrac{1}{x-2}+\dfrac{1}{x+2}+\dfrac{x^2+1}{x^2-4}\left(dkxd:x\ne\pm2\right)\)

\(=\dfrac{x+2+x-2+x^2+1}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{x^2+2x+1}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{\left(x+1\right)^2}{x^2-4}\)

Vậy \(A=\dfrac{\left(x+1\right)^2}{x^2-4}\)

\(b,\) Theo đề, ta có : \(-2< x< 2\) 

\(\Rightarrow x-2< 0;x+2>0;\left(x+1\right)^2>0\)

\(\Rightarrow A< 0\) hay phân thức luôn có giá trị âm

 

10 tháng 12 2021

b: \(A=\dfrac{2-1}{3\cdot2}=\dfrac{1}{6}\)

a: \(A=x^3-27-x^3+3x^2-3x+1-4\left(x^2-4\right)-x\)

\(=3x^2-4x-26-4x^2+16\)

\(=-x^2-4x-10\)

5 tháng 10 2019

a, ĐKXĐ: \(\hept{\begin{cases}x^3+1\ne0\\x^9+x^7-3x^2-3\ne0\\x^2+1\ne0\end{cases}}\)

b, \(Q=\left[\left(x^4-x+\frac{x-3}{x^3+1}\right).\frac{\left(x^3-2x^2+2x-1\right)\left(x+1\right)}{x^9+x^7-3x^2-3}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)

\(Q=\left[\frac{\left(x^3+1\right)\left(x^4-x\right)+x-3}{\left(x+1\right)\left(x^2-x+1\right)}.\frac{\left(x-1\right)\left(x+1\right)\left(x^2-x+1\right)}{\left(x^7-3\right)\left(x^2+1\right)}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)

\(Q=\left[\left(x^7-3\right).\frac{\left(x-1\right)}{\left(x^7-3\right)\left(x^2+1\right)}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)

\(Q=\frac{x-1+x^2+1-2x-12}{x^2+1}\)

\(Q=\frac{\left(x-4\right)\left(x+3\right)}{x^2+1}\)

3 tháng 12 2017

Ta có: \(x^2-y+\frac{1}{4}=y^2-x+\frac{1}{4}=0\)

\(\Rightarrow\left(x^2-x+\frac{1}{4}\right)+\left(y^2-y+\frac{1}{4}\right)=0\)

\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}x-\frac{1}{2}=0\\y-\frac{1}{2}=0\end{cases}\Rightarrow}x=y=\frac{1}{2}\)

Vậy \(x=y=\frac{1}{2}\)

19 tháng 12 2021

\(A=\dfrac{x+2+x-2+x^2+1}{\left(x-2\right)\left(x+2\right)}=\dfrac{\left(x+1\right)^2}{\left(x-2\right)\left(x+2\right)}\)

Với \(-2< x< 2\Leftrightarrow\left\{{}\begin{matrix}x-2< 0\\x+2>0\end{matrix}\right.\Leftrightarrow\left(x-2\right)\left(x+2\right)< 0;x\ne-1\Leftrightarrow\left(x+1\right)^2>0\Leftrightarrow A< 0\)

19 tháng 12 2021

\(A=\dfrac{x+2+x-2+x^2+1}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^2+2x+1}{x^2-4}\)

\(A=\left(\frac{2X-1}{x^2-4}+\frac{x+2}{x^2-x-2}\right):\frac{x-2}{x^2+3x+2}ĐK:x\ne\left\{2,-2,-1\right\}\)

a)  \(A=\left[\frac{\left(2x-1\right)}{\left(x-2\right)\left(x+2\right)}+\frac{x+2}{\left(x+1\right)\left(x-2\right)}\right]:\frac{x-2}{\left(x+2\right)\left(x+1\right)}\)

\(A=\left[\frac{\left(2x-1\right)\left(x+1\right)}{\left(x-2\right)\left(x+2\right)\left(x+1\right)}\frac{\left(x+2\right)\left(x+2\right)}{\left(x+1\right)\left(x-2\right)\left(x+2\right)}\right].\frac{\left(x+2\right)\left(x+1\right)}{x-2}\)

\(A=\frac{2x^2+x-1+x^2+4x.4}{\left(x-2\right)\left(x+2\right)\left(x+1\right)}.\frac{\left(x+2\right)\left(x+1\right)}{\left(x-2\right)}\)

\(A=\frac{3x^2+5x+3}{\left(x-2\right)\left(x+2\right)\left(x+1\right)}.\frac{\left(x+2\right)\left(x+1\right)}{\left(x-2\right)}\)

\(A=\frac{3x^2+5x+3}{\left(x-2\right)^2}\)

Ta có :\(3x^2+5x+3\)

\(=3\left(x^2+\frac{5}{3}x+1\right)\)

\(=3\left[x^2+2.\frac{5}{6}x+\frac{25}{36}+\frac{9}{36}\right]\)

\(=3\left[\left(x+\frac{5}{6}\right)^2+\frac{9}{36}\right]>0\)

Mà \(\left(x-2\right)^2>0\)

\(\Rightarrow A>0\left(dpcm\right)\)

\(b,A=11\Leftrightarrow\frac{3x^2+5x+3}{\left(x-2\right)^2}=11\)

\(\Rightarrow3x^2+5x+3=11.\left(x-2\right)^2\)

\(\Rightarrow3x^2+5x+3=11.\left(x^2-4x+4\right)\)

\(\Rightarrow8x^2-49x+41=0\)

\(\Rightarrow8x^2-8x-41x+41=0\)

\(\Rightarrow8x\left(x-1\right)-41\left(x-1\right)=0\)

\(\Rightarrow\left(8x-41\right)\left(x-1\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}8x-41=0\\x-1=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{41}{8}\\x=1\end{cases}}}\)(Thỏa mãn)