K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2019

a,Đk: \(\left\{{}\begin{matrix}\sqrt{1+x}\ge0\\\sqrt{1-x}\ge0\\x\ne0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}1+x\ge0\\1-x\ge0\\x\ne0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x\ge-1\\x\le1\\x\ne0\end{matrix}\right.\) <=> \(-1\le x\le1,x\ne0\)

b, A= \(\left(\frac{\sqrt{1+x}}{\sqrt{1+x}-\sqrt{1-x}}-\frac{1-x}{\sqrt{1-x^2}-1+x}\right)\left(\sqrt{\frac{1}{x^2}-1}-\frac{1-x}{x}\right).\frac{x}{1-x+\sqrt{1-x^2}}\)

=\(\left(\frac{\sqrt{1+x}}{\sqrt{1+x}-\sqrt{1-x}}-\frac{\left(\sqrt{1-x}\right)^2}{\sqrt{1-x}\left(\sqrt{1+x}-\sqrt{1-x}\right)}\right)\left(\sqrt{\frac{1-x^2}{x^2}}-\frac{1-x}{x}\right).\frac{x}{\left(\sqrt{1-x}\right)^2+\sqrt{\left(1-x\right)\left(1+x\right)}}\)

=\(\left(\frac{\sqrt{1+x}}{\sqrt{1+x}-\sqrt{1-x}}-\frac{\sqrt{1-x}}{\sqrt{1+x}-\sqrt{1-x}}\right)\left(\frac{\sqrt{1-x^2}}{\left|x\right|}-\frac{1-x}{x}\right).\frac{x}{\sqrt{1-x}\left(\sqrt{1-x}+\sqrt{1+x}\right)}\)( do x>0) (1)

Tại \(0\le x\le1\) => \(\left|x\right|=x\)

Từ (1) <=> A=\(\frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}-\sqrt{1-x}}.\frac{\sqrt{\left(1-x\right)\left(1+x\right)}-\left(1-x\right)}{x}.\frac{x}{\sqrt{1-x}\left(\sqrt{1-x}+\sqrt{1+x}\right)}\)

=\(\frac{\sqrt{1-x}\left(\sqrt{1+x}-\sqrt{1-x}\right)}{x}.\frac{x}{\sqrt{1-x}\left(\sqrt{1-x}+\sqrt{1+x}\right)}\)

=\(\frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1-x}+\sqrt{1+x}}\)=\(\frac{\left(\sqrt{1+x}-\sqrt{1-x}\right)^2}{\left(\sqrt{1-x}+\sqrt{1+x}\right)\left(\sqrt{1+x}-\sqrt{1-x}\right)}=\frac{1+x-2\sqrt{\left(1+x\right)\left(1-x\right)}+1-x}{1+x-\left(1-x\right)}=\frac{2-2\sqrt{1-x^2}}{2x}=\frac{1-\sqrt{1-x^2}}{x}\)

Tại \(-1\le x< 0\)

Từ (1) <=> \(\frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}-\sqrt{1-x}}.\left(\frac{-\sqrt{1-x^2}}{x}-\frac{1-x}{x}\right).\frac{x}{\sqrt{1-x}\left(\sqrt{1-x}+\sqrt{1+x}\right)}\)

=\(\frac{-\sqrt{\left(1-x\right)\left(1+x\right)}-\left(\sqrt{1-x}\right)^2}{x}.\frac{x}{\sqrt{1-x}\left(\sqrt{1-x}+\sqrt{1+x}\right)}\)

=\(\frac{-\sqrt{1-x}\left(\sqrt{1+x}+\sqrt{1-x}\right)}{x}.\frac{x}{\sqrt{1-x}\left(\sqrt{1-x}+\sqrt{1+x}\right)}\)

=-1

Vậy \(\left\{{}\begin{matrix}0\le x\le1\\-1\le x< 0\end{matrix}\right.\)=> \(\left\{{}\begin{matrix}A=\frac{1-\sqrt{1-x^2}}{x}\\A=-1\end{matrix}\right.\)

19 tháng 10 2019

Lê Thanh Nhàn uk

6 tháng 10 2018

Ai giải giúp mình bài 1 với bài 4 trước đi

a: \(A=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}\)

\(=\sqrt{a}-\sqrt{b}-\sqrt{a}-\sqrt{b}=-2\sqrt{b}\)

b: \(B=\dfrac{2\sqrt{x}-x-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{x+\sqrt{x}+1}{x-1}\)

\(=\dfrac{-2x+\sqrt{x}-1}{\sqrt{x}-1}\cdot\dfrac{1}{x-1}\)

c: \(C=\dfrac{x-9-x+3\sqrt{x}}{x-9}:\left(\dfrac{3-\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}-2}{\sqrt{x}+3}+\dfrac{x-9}{x+\sqrt{x}-6}\right)\)

\(=\dfrac{3\left(\sqrt{x}-3\right)}{x-9}:\dfrac{9-x+x-4\sqrt{x}+4+x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{3}{\sqrt{x}+3}\cdot\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}{x-4\sqrt{x}+4}\)

\(=\dfrac{3}{\sqrt{x}-2}\)

8 tháng 9 2017

I don't know! :))

8 tháng 11 2020

A=\(\frac{x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{1}{\sqrt{x}-2}+\frac{1}{\sqrt{x}+2}\)

=\(\frac{x+\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{x+2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

=\(\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{\sqrt{x}}{\sqrt{x-2}}\)

Vậy A=\(\frac{\sqrt{x}}{\sqrt{x}-2}\)vs x\(\ge0;x\ne4\)

9 tháng 11 2020

C=\(\left(\frac{1+x}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)\times\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}}=\frac{1+x}{\sqrt{x}}\)

Vậy C=\(\frac{1+x}{\sqrt{x}}\)vs x>0

14 tháng 7 2016

a) ĐKXĐ : \(0\le x\ne4\) 

b) \(A=\left(\frac{\sqrt{x}}{\sqrt{x}+2}+\frac{\sqrt{x}}{2-\sqrt{x}}+\frac{4\sqrt{x}-1}{x-4}\right):\frac{1}{x-4}\)  

\(=\left[\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{4\sqrt{x}-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right].\left(x-4\right)\)

\(=\frac{x-2\sqrt{x}-x-2\sqrt{x}+4\sqrt{x}-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)\)

\(=\frac{-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)=-1\)

13 tháng 7 2016

\(A=\left[\frac{\left(\sqrt{x}-2\right)\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{4\sqrt{x}-1}{x-4}\right]:\frac{1}{x-4}\)

\(=\frac{x-2\sqrt{x}-x-2\sqrt{x}+4\sqrt{x}-1}{x-4}.\left(x-4\right)\)=\(=\frac{-1}{x-4}.\left(x-4\right)=-1\)

Vậy giá trị của A thỏa mãn mọi x và rút gọn lại còn -1

\(A=\left(\frac{x\sqrt{x}-1}{x-\sqrt{x}}-\frac{x\sqrt{x}+1}{x+\sqrt{x}}\right):\left(1-\frac{3-\sqrt{x}}{\sqrt{x}+1}\right)\)

\(=\left(\frac{x\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}-\frac{x\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\right):\left(1-\frac{3-\sqrt{x}}{\sqrt{x}+1}\right)\)

\(Đkxđ:\)

\(\sqrt{x}\ge0\Rightarrow x\ge0\)

\(\sqrt{x}-1\ne0\Rightarrow\sqrt{x}\ne1\Rightarrow x\ne1\)

\(\sqrt{x}\ne0\Rightarrow x\ne0\)

\(\RightarrowĐkxđ:x>0;x\ne1\)

\(A=\left(\frac{x\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}-\frac{x\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\right):\left(1-\frac{3-\sqrt{x}}{\sqrt{x}+1}\right)\)

\(=\frac{\left(x\sqrt{x}-1\right)\left(\sqrt{x}+1\right)-\left(x\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\frac{\sqrt{x}+1-3+\sqrt{x}}{\sqrt{x}+1}\)

\(=\frac{x^2+x\sqrt{x}-\sqrt{x}-1-x^2+x\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\frac{2\sqrt{x}-2}{\sqrt{x}+1}\)

\(=\frac{2x\sqrt{x}-2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\frac{\sqrt{x}+1}{2\sqrt{x}-2}\)

\(=\frac{2\sqrt{x}\left(x-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\frac{\sqrt{x}+1}{2\left(\sqrt{x}-1\right)}\)

\(=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

14 tháng 7 2019

\(đkxđ\Leftrightarrow\hept{\begin{cases}x\ge0\\\sqrt{x}-1\ne0\end{cases}\Rightarrow\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}}\)

\(A=\left(\frac{x\sqrt{x}-1}{x-\sqrt{x}}-\frac{x\sqrt{x}+1}{x+\sqrt{x}}\right)\)\(:\left(1-\frac{3-\sqrt{x}}{\sqrt{x}+1}\right)\)

\(=\left(\frac{\sqrt{x}^3-1}{\sqrt{x}\left(\sqrt{x}-1\right)}-\frac{\sqrt{x}^3+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\right):\)\(\left(\frac{\sqrt{x}+1-3+\sqrt{x}}{\sqrt{x}+1}\right)\)

\(=\left(\frac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\right)\)\(:\left(\frac{2\sqrt{x}-2}{\sqrt{x}+1}\right)\)

\(=\left(\frac{x+\sqrt{x}+1-x+\sqrt{x}-1}{\sqrt{x}}\right):\frac{2\left(\sqrt{x}-1\right)}{\sqrt{x}+1}\)

\(=\frac{2\sqrt{x}}{\sqrt{x}}.\frac{\sqrt{x}+1}{2\cdot\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

13 tháng 7 2016

ĐKXĐ: \(x\ge4\)

a/ \(A=\frac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\left[\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)-\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\right]\)

     \(=\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\left(\frac{x-4-x+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\right)\)

        \(=\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\left(-3\right)}\) 

       \(=\frac{\sqrt{x}-2}{-3\sqrt{x}}\)

b/ A = 0 \(\Rightarrow\frac{\sqrt{x}-2}{-3\sqrt{x}}=0\Rightarrow\sqrt{x}-2=0\Rightarrow\sqrt{x}=2\Rightarrow x=4\)

13 tháng 7 2016

Cho mình sửa lại:

Điều kiện: x > 4

nên câu b loại x = 4 nha