K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2020

\(M=\frac{x+2}{x+3}-\frac{5}{x^2+x-6}+\frac{1}{2-x}\)

a) ĐKXĐ : x ≠ -3 , x ≠ 2

\(=\frac{x+2}{x+3}-\frac{5}{x^2-2x+3x-6}-\frac{1}{x-2}\)

\(=\frac{x+2}{x+3}-\frac{5}{x\left(x-2\right)+3\left(x-2\right)}-\frac{1}{x-2}\)

\(=\frac{\left(x+2\right)\left(x-2\right)}{\left(x+3\right)\left(x-2\right)}-\frac{5}{\left(x+3\right)\left(x-2\right)}-\frac{x+3}{\left(x+3\right)\left(x-2\right)}\)

\(=\frac{x^2-4-5-x-3}{\left(x+3\right)\left(x-2\right)}=\frac{x^2-x-12}{\left(x+3\right)\left(x-2\right)}\)

\(=\frac{x^2-4x+3x-12}{\left(x+3\right)\left(x-2\right)}=\frac{x\left(x-4\right)+3\left(x-4\right)}{\left(x+3\right)\left(x-2\right)}\)

\(=\frac{\left(x+3\right)\left(x-4\right)}{\left(x+3\right)\left(x-2\right)}=\frac{x-4}{x-2}\)

b) Để M = 1/3

=> \(\frac{x-4}{x-2}=\frac{1}{3}\)( x ≠ -3 , x ≠ 2 )

=> 3( x - 4 ) = x - 2

=> 3x - 12 - x + 2 = 0

=> 2x - 10 = 0

=> 2x = 10

=> x = 5 ( tm )

Vậy x = 5 thì M = 1/3

26 tháng 12 2020

đk: \(x\ne2,x\ne-3\)

a) Ta có: \(M=\frac{-4+x^2}{x^2+x-6}-\frac{5}{x^2+x-6}-\frac{x+3}{x^2+x-6}\)

\(=\frac{x^2-x-12}{x^2+x-6}=\frac{\left(x-4\right)\left(x+3\right)}{\left(x-2\right)\left(x+3\right)}=\frac{x-4}{x-2}\)

b) \(M=\frac{1}{3}\Rightarrow\frac{x-4}{x-2}=\frac{1}{3}\Leftrightarrow3x-12=x-2\Leftrightarrow x=5\)

24 tháng 5 2021
Gửi bạn....

Bài tập Tất cả

24 tháng 5 2021

\(M=\frac{x^4+2}{x^6+1}+\frac{x^2-1}{x^4-x^2+1}-\frac{x^2+3}{x^4+4x^2+3}\left(ĐKXĐ:x\in R\right)\).

\(M=\frac{x^4+2}{x^6+1}+\frac{x^2-1}{x^4-x^2+1}-\frac{x^2+3}{\left(x^2+3\right)\left(x^2+1\right)}\).

\(M=\frac{x^4+2}{\left(x^2+1\right)\left(x^4-x^2+1\right)}+\frac{x^2-1}{x^4-x^2+1}-\frac{1}{x^2+1}\).

\(M=\frac{x^4+2}{\left(x^2+1\right)\left(x^4-x^2+1\right)}+\frac{\left(x^2-1\right)\left(x^2+1\right)}{\left(x^4-x^2+1\right)\left(x^2+1\right)}-\frac{x^4-x^2+1}{\left(x^4-x^2+1\right)\left(x^2+1\right)}\).

\(M=\frac{x^4+2+\left(x^2-1\right)\left(x^2+1\right)-x^4+x^2-1}{\left(x^4-x^2+1\right)\left(x^2+1\right)}\).

\(M=\frac{x^4+2+x^4-1-x^4+x^2-1}{\left(x^2+1\right)\left(x^4-x^2+1\right)}=\frac{x^4+x^2}{\left(x^4-x^2+1\right)\left(x^2+1\right)}\)

\(M=\frac{x^2\left(x^2+1\right)}{\left(x^2+1\right)\left(x^4-x^2+1\right)}=\frac{x^2}{x^4-x^2+1}\).

Vậy với \(x\in R\)thì \(M=\frac{x^2}{x^4-x^2+1}\).

9 tháng 12 2017

\(M=\frac{4x+8}{x^2-1}:\frac{x+2}{x+1}-\frac{x-2}{1-x}\)   \(ĐKXĐ:x\ne\pm1\)

\(M=\frac{4\left(x+2\right)}{\left(x-1\right)\left(x+1\right)}.\frac{x+1}{x+2}+\frac{x-2}{x-1}\)

\(M=\frac{4}{x-1}+\frac{x-2}{x-1}\)

\(M=\frac{4+x-2}{x-1}\)

\(M=\frac{x+2}{x-1}\)

vậy \(M=\frac{x+2}{x-1}\)