Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P = x4.y4 + x4 + y4 + 1
Ta có: x2 + y2 = (x + y)2 - 2xy = 10 - 2xy => x4 + y4 = (x2 + y2)2 - 2x2y2 = (10 - 2xy)2 - 2(xy)2 = 100 - 40xy + 2(xy)2
=> P = (xy)4 + 2(xy)2 - 40xy + 101 = [(xy)4 - 8(xy)2 + 16] + 10.[(xy)2 - 4xy + 4] + 45 = [(xy)2 - 4]2 + 10.(xy - 2)2 + 45
=> P > 45
Dấu "=" xảy ra <=> xy = 2
Mà có x + y = \(\sqrt{10}\) => x = \(\sqrt{10}\) - y => xy = \(\sqrt{10}\)y - y2 = 2 => y2 - \(\sqrt{10}\).y + 2 = 0
\(\Delta\) = 10 - 8 = 2 => \(y=\frac{\sqrt{10}+\sqrt{2}}{2}\)=> x = \(\frac{4}{\sqrt{10}+\sqrt{2}}=\frac{\sqrt{10}-\sqrt{2}}{2}\)
vậy P nhỏ nhất bằng 45 khi x = \(\frac{\sqrt{10}-\sqrt{2}}{2}\); \(y=\frac{\sqrt{10}+\sqrt{2}}{2}\)
P = x4.y4 + x4 + y4 + 1
Ta có: x2 + y2 = (x + y)2 - 2xy = 10 - 2xy => x4 + y4 = (x2 + y2)2 - 2x2y2 = (10 - 2xy)2 - 2(xy)2 = 100 - 40xy + 2(xy)2
=> P = (xy)4 + 2(xy)2 - 40xy + 101 = [(xy)4 - 8(xy)2 + 16] + 10.[(xy)2 - 4xy + 4] + 45 = [(xy)2 - 4]2 + 10.(xy - 2)2 + 45
=> P > 45
Dấu "=" xảy ra <=> xy = 2
Mà có x + y = \(\sqrt{10}\) => x = \(\sqrt{10}\) - y => xy = \(\sqrt{10}\)y - y2 = 2 => y2 - \(\sqrt{10}\).y + 2 = 0
\(\Delta\) = 10 - 8 = 2 => \(y=\frac{\sqrt{10}+\sqrt{2}}{2}\)=> x = \(\frac{4}{\sqrt{10}+\sqrt{2}}=\frac{\sqrt{10}-\sqrt{2}}{2}\)
vậy P nhỏ nhất bằng 45 khi x = \(\frac{\sqrt{10}-\sqrt{2}}{2}\); \(y=\frac{\sqrt{10}+\sqrt{2}}{2}\)
a)Ta có: \(\Delta\)= m2 - 4(m - 1) = m2 - 4m + 4 = (m - 2)2 \(\geq\)0 với mọi m
Vậy: PT có 2 nghiệm x1, x2 với mọi m
b)Theo Vi-et: x1 + x2 = m và x1x2 = m - 1
Do đó: A = x12 + x22 - 6x1x2 = (x1 + x2)2 - 8x1x2 = m2 - 8(m - 1) = m2 - 8m + 8 = ( m2 - 8m + 16) - 8 = (m - 4)2 - 8 \(\geq\)- 8 với mọi m
đúng nhé
Vậy: GTNN của A là -8 <=> m = 4
2.M = 2x2 – 10x + 2y2 + 2xy – 8y + 4038 = (x2 – 10x + 25) +( y2 + 2xy + y2) + ( y2 – 8y + 16) + 3997
= (x-5)2 + (x+y)2 + (y - 4)2 + 3997 = N + 3997
Áp dụng bất đẳng thức Bu- nhi a: (ax+ by + cz)2 \(\le\) (a2+ b2 + c2). (x2 + y2 + z2). Dấu bằng xảy ra khi a/x = b/y = c/z
Ta có: [(5 - x).1 + (x+ y).1 + (y + 4).1]2 \(\le\) [(5 - x)2 + (x+y)2 + (y - 4)2 ].(1+ 1+1) = N .3 = 3.N
<=> 92 = 81 \(\le\) 3.N => N \(\ge\) 27 => 2.M \(\ge\) 27 + 3997 = 4024
=> M \(\ge\)2012
vậy Min M = 2012
khi 5 - x = x+ y = y + 4 => x = 4 ; y = -3
\(M=\left(2x-1\right)^2-3\left|2x-1\right|+2=\left|2x-1\right|^2-3\left|2x-1\right|+2\)
Đặt: | 2x -1 | = t ( t >=0)
=> \(M=t^2-3t+2=\left(t^2-2.t.\frac{3}{2}+\frac{9}{4}\right)-\frac{9}{4}+2\)
\(=\left(t-\frac{3}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)
Dấu "=" xảy ra <=> \(t=\frac{3}{2}\)( tm)
khi đó: \(\left|2x-1\right|=\frac{3}{2}\Leftrightarrow\orbr{\begin{cases}2x-1=\frac{3}{2}\\2x-1=-\frac{3}{2}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{3}{4}\\x=-\frac{1}{4}\end{cases}}\)
Vậy min M = -1/4 <=> x =3/4 hoặc x =- 1/4
Để phương trình có nghiệm khi \(\Delta>0\)
\(\Delta=\left(2m+4\right)^2-4\left(m^2+4m+3\right)=4m^2+16m+16-4m^2-16m-12\)
\(=4>0\)
Vậy phương trình luôn có 2 nghiệm pb
Theo Vi et : \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2m+4\\x_1x_2=\dfrac{c}{a}=m^2+4m+3\end{matrix}\right.\)
\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=\left(2m+4\right)^2-2\left(m^2+4m+3\right)\)
\(=4m^2+16m+16-2m^2-8m-6=2m^2+8m+10\)
\(=2\left(m^2+4m+5\right)=2\left(m+2\right)^2+2\ge2\)
Dấu ''='' xảy ra khi m = -2
\(\Delta'=\left(m+2\right)^2-\left(m^2+4m+3\right)=1>0\)
\(\Rightarrow\) pt luôn có 2 nghiệm phân biệt
Áp dụng hệ thức Vi-ét: \(\left\{{}\begin{matrix}x_1+x_2=2m+4\\x_1x_2=m^2+4m+3\end{matrix}\right.\)
Ta có: \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=4\left(m+2\right)^2-2\left(m^2+4m+3\right)\)
\(=2m^2+8m+10=2\left(m^2+4m+4\right)+2=2\left(m+2\right)^2+2\ge2\)
\(\Rightarrow\) GTNN của \(x_1^2+x_2^2=2\) khi \(m=-2\)