Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(A=\left(\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}+\frac{\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\frac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)^2}\\ =\frac{\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\frac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}\\ =\frac{\sqrt{a}-1}{\sqrt{a}}\)
b) Ta có: \(A=\frac{\sqrt{a}-1}{\sqrt{a}}=\frac{\sqrt{a}}{\sqrt{a}}-\frac{1}{\sqrt{a}}=1-\frac{1}{\sqrt{a}}\)
Với mọi a>0 và a≠1 ta có \(\sqrt{a}>0\Leftrightarrow\frac{1}{\sqrt{a}}>0\)
\(\Rightarrow A=1-\frac{1}{\sqrt{a}}< 1\left(đpcm\right)\)
c)
\(A=1-\frac{1}{\sqrt{a}}=\frac{1}{2}\Leftrightarrow\frac{1}{\sqrt{a}}=\frac{1}{2}\Leftrightarrow\sqrt{a}=2\Leftrightarrow a=4\left(tm\right)\)
Vậy.......
1. Với x = 36
=> A= \(\dfrac{\sqrt{36}-2}{\sqrt{36}-1}\)=\(\dfrac{4}{5}\)
2. Với x >0, x ≠1
B=\(\dfrac{x-5}{x-1}-\dfrac{2}{\sqrt{x}+1}+\dfrac{4}{\sqrt{x}-1}\)
B=\(\dfrac{x-5}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{4\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
B=\(\dfrac{x-5-2\left(\sqrt{x}-1\right)+4\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
B=\(\dfrac{x-5-2\sqrt{x}+2+4\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
B=\(\dfrac{x+2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
B=\(\dfrac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
B=\(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
3. P=\(\dfrac{A}{B}\)=\(\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\). \(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)=\(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\)
Ta có \(\sqrt{P}< \dfrac{1}{2}\)
=>P<\(\dfrac{1}{4}\)
=> \(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\)<\(\dfrac{1}{4}\)
=> \(4\left(\sqrt{x}-2\right)< \sqrt{x}+1\)
=> \(4\sqrt{x}-8< \sqrt{x}+1 \)
=> \(3\sqrt{x}< 9\)
=>\(\sqrt{x}< 3\)
=> x< 9
Lại có x ϵ Z => x ϵ {-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8}
Ta thử lại với x ≠ 1
=> x ϵ {-8,-7,-6,-5,-4,-3,-2,0,2,3,4,5,6,7,8}
1: Khi x=9 thì \(A=\dfrac{3+1}{3-1}=\dfrac{4}{2}=2\)
2: \(P=\dfrac{x-2+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}}=\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
3: 2P=2*căn x+5
=>\(\dfrac{2\sqrt{x}+2}{\sqrt{x}}=2\sqrt{x}+5\)
=>\(2x+5\sqrt{x}-2\sqrt{x}-2=0\)
=>\(2x+3\sqrt{x}-4=0\)
=>\(\left(\sqrt{x}+2\right)\left(2\sqrt{x}-1\right)=0\)
=>\(2\sqrt{x}-1=0\)
=>x=1/4
a) A= \(\left(\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\right):\left(\frac{\sqrt{x}-1}{2}\right)\) (x ≥ 0; x ≠ 4)
= \(\left(\frac{x+2}{\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}+\frac{\left(\sqrt{x}-1\right)\cdot\sqrt{x}}{\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}-\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}\right):\frac{\sqrt{x}-1}{2}\)
=\(\left(\frac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}\right)\cdot\frac{2}{\sqrt{x}-1}\)
=\(\left(\frac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}\right)\cdot\frac{2}{\sqrt{x}-1}\)
= \(\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}\cdot\frac{2}{\sqrt{x}-1}\)
=\(\frac{2}{x+\sqrt{x}+1}\)
b) Ta có: x ≥ 0 ⇒ \(\sqrt{x}\) ≥ 0
⇒x+\(\sqrt{x}\)+1 ≥ 1 > 0
mà 2 > 0
⇒ A > 0 (1)
Ta có:
\(x+\sqrt{x}+1\) ≥ 1
⇒ \(\frac{1}{x+\sqrt{x}+1}\) ≤ 1
⇒\(\frac{2}{x+\sqrt{x}+1}\) ≤ 2
⇒A ≤ 2 (2)
Từ (1) và (2) => 0 < A ≤ 2
\(Q=\frac{\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\left(\frac{1}{\sqrt{a}-1}-\frac{2\sqrt{a}}{a\left(\sqrt{a}-1\right)+\sqrt{a}-1}\right)\)
\(=\frac{\sqrt{a}+1}{\sqrt{a}-1}\left(\frac{1}{\sqrt{a}-1}-\frac{2\sqrt{a}}{\left(a+1\right)\left(\sqrt{a}-1\right)}\right)=\frac{\sqrt{a}+1}{\sqrt{a}-1}\left(\frac{a+1}{\left(a+1\right)\left(\sqrt{a}-1\right)}-\frac{2\sqrt{a}}{\left(a+1\right)\left(\sqrt{a}-1\right)}\right)\)
\(=\frac{\sqrt{a}+1}{\sqrt{a}-1}\left(\frac{a-2\sqrt{a}+1}{\left(a+1\right)\left(\sqrt{a}-1\right)}\right)=\frac{\sqrt{a}+1}{\sqrt{a}-1}\left(\frac{\left(\sqrt{a}-1\right)^2}{\left(a+1\right)\left(\sqrt{a}-1\right)}\right)\)
\(=\frac{\sqrt{a}+1}{a+1}\)
b/ Đề sai, đề đúng phải là \(a>1\) thì \(Q< 1\)
Do \(a>1\Rightarrow a>\sqrt{a}\Rightarrow\frac{\sqrt{a}+1}{a+1}< \frac{a+1}{a+1}=1\Rightarrow Q< 1\)
bài 5 nhé:
a) (a+1)2>=4a
<=>a2+2a+1>=4a
<=>a2-2a+1.>=0
<=>(a-1)2>=0 (luôn đúng)
vậy......
b) áp dụng bất dẳng thức cô si cho 2 số dương 1 và a ta có:
a+1>=\(2\sqrt{a}\)
tương tự ta có:
b+1>=\(2\sqrt{b}\)
c+1>=\(2\sqrt{c}\)
nhân vế với vế ta có:
(a+1)(b+1)(c+1)>=\(2\sqrt{a}.2\sqrt{b}.2\sqrt{c}\)
<=>(a+1)(b+1)(c+1)>=\(8\sqrt{abc}\)
<=>(a+)(b+1)(c+1)>=8 (vì abc=1)
vậy....
Với 0 < a < 1 ta có:
P = 1 + a 1 + a − 1 − a + 1 − a 2 1 − a 1 + a − 1 − a 2 1 − a 2 a 2 − 1 a = 1 + a 1 + a − 1 − a + 1 − a 2 1 − a 1 + a − 1 − a ( 1 − a ) ( 1 + a ) a 2 − 1 a = 1 + a 1 + a − 1 − a + 1 − a 1 + a − 1 − a 1 − a . 1 + a a 2 − 1 a = 1 + a + 1 − a 1 + a − 1 − a . 2 1 − a . 1 + a − ( 1 − a ) − ( 1 + a ) 2 a = 1 + a + 1 − a 1 + a − 1 − a . − 1 + a − 1 − a 2 2 a = − 1 + a + 1 − a 1 + a − 1 − a 2 a = − 1 + a − 1 + a 2 a = − 2 a 2 a = − 1