K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2023

Ta có: \(P=\dfrac{\sqrt{a}+3}{\sqrt{a}-2}-\dfrac{\sqrt{a}-1}{\sqrt{a}+2}+\dfrac{4\sqrt{a}}{4-\sqrt{a}}\)

a) ĐKXĐ: \(a\ne4;a\ne16;a\ge0\)

\(P=\dfrac{\sqrt{a}+3}{\sqrt{a}-2}-\dfrac{\sqrt{a}-1}{\sqrt{a}+2}-\dfrac{4\sqrt{a}}{\sqrt{a}-4}\)

\(P=\dfrac{\left(\sqrt{a}+3\right)\left(\sqrt{a}+2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}-\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}-\dfrac{4\sqrt{a}}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\)

\(P=\dfrac{a+3\sqrt{a}+2\sqrt{a}+6-a+2\sqrt{a}+\sqrt{a}-2-4\sqrt{a}}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}\)

\(P=\dfrac{4\sqrt{a}+4}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}\)

\(P=\dfrac{4\sqrt{a}+4}{a-4}\)

b) Thay x=9 vào P ta có:

\(P=\dfrac{4\cdot\sqrt{9}+4}{9-4}=\dfrac{16}{5}\)

c) \(P< 0\) khi:

\(\dfrac{4\sqrt{x}+4}{a-4}< 0\) 

Mà: \(4\sqrt{x}+4>0\)

\(\Rightarrow a-4< 0\)

\(\Rightarrow a< 4\) 

kết hợp với Đk ta có:

\(0\le x< 4\)

8 tháng 8 2023

8 tháng 8 2023

cái cuối là 4 căn a-4/4-a ý ạ

 

a: \(A=\dfrac{2\sqrt{a}-9}{a-5\sqrt{a}+6}-\dfrac{\sqrt{a}+3}{\sqrt{a}-2}-\dfrac{2\sqrt{a}+1}{3-\sqrt{a}}\)

\(=\dfrac{2\sqrt{a}-9}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-3\right)}-\dfrac{\sqrt{a}+3}{\sqrt{a}-2}+\dfrac{2\sqrt{a}+1}{\sqrt{a}-3}\)

\(=\dfrac{2\sqrt{a}-9-\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)+\left(2\sqrt{a}+1\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-3\right)}\)

\(=\dfrac{2\sqrt{a}-9-a+9+2a-3\sqrt{a}-2}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-3\right)}\)

\(=\dfrac{a-\sqrt{a}-2}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-3\right)}=\dfrac{\sqrt{a}+1}{\sqrt{a}-3}\)

b: A<1

=>A-1<0

=>\(\dfrac{\sqrt{a}+1}{\sqrt{a}-3}-1< 0\)

=>\(\dfrac{\sqrt{a}+1-\sqrt{a}+3}{\sqrt{a}-3}< 0\)

=>\(\dfrac{4}{\sqrt{a}-3}< 0\)

=>căn a-3<0

=>0<=a<9 và a<>4

c: A là số nguyên

=>\(\sqrt{a}+1⋮\sqrt{a}-3\)

=>căn a-3+4 chia hết cho căn a-3

=>căn a-3 thuộc {1;-1;2;-2;4;-4}

mà a>=0 và a<>4; a<>9

nên a thuộc {16;25;1;49}

a: \(A=\dfrac{2\sqrt{a}-9}{a-5\sqrt{a}+6}-\dfrac{\sqrt{a}+3}{\sqrt{a}-2}-\dfrac{2\sqrt{a}-1}{3-\sqrt{a}}\)

\(=\dfrac{2\sqrt{a}-9-\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)+\left(2\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-3\right)}\)

\(=\dfrac{2\sqrt{a}-9-a+9+2a-5\sqrt{a}+2}{\left(\sqrt{a}-2\right)\cdot\left(\sqrt{a}-3\right)}\)

\(=\dfrac{a-3\sqrt{a}+2}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-3\right)}=\dfrac{\sqrt{a}-1}{\sqrt{a}-3}\)

b: A là số nguyên

=>\(\sqrt{a}-3+2⋮\sqrt{a}-3\)

=>\(\sqrt{a}-3\in\left\{1;-1;2;-2\right\}\)

=>a thuộc {16;25;1}

13 tháng 6 2021

a, \(B=\frac{\sqrt{a}+3}{2\sqrt{a}-6}-\frac{3-\sqrt{a}}{2\sqrt{a}+6}=\frac{\left(2\sqrt{a}+6\right)\left(\sqrt{a}+3\right)+\left(2\sqrt{a}-6\right)\left(\sqrt{a}-3\right)}{4a-36}\)

\(=\frac{2a+12\sqrt{a}+18+2a-12\sqrt{a}+18}{4a-36}=\frac{4a+36}{4a-36}=\frac{a+9}{a-9}\)

b, Ta có : \(B>1\Rightarrow\frac{a+9}{a-9}>1\Leftrightarrow\frac{a+9}{a-9}-1>0\)

\(\Leftrightarrow\frac{a+9-a+9}{a-9}>0\Leftrightarrow\frac{18}{a-9}>0\Rightarrow a-9>0\Leftrightarrow a>9\)vì 18 > 0 

\(B< 1\Rightarrow\frac{a+9}{a-9}< 1\Leftrightarrow\frac{a+9}{a-9}-1< 0\)

\(\Leftrightarrow\frac{a+9-a+9}{a-9}< 0\Leftrightarrow\frac{18}{a-9}< 0\Rightarrow a-9< 0\Leftrightarrow a< 9\)vì 18 > 0 

c, Ta có : \(B=4\Rightarrow\frac{a+9}{a-9}=4\Rightarrow a+9=4a-36\Leftrightarrow3a=45\Leftrightarrow a=15\)

Vậy a = 15 thì B = 4 

a: ĐKXĐ: x>=0; x<>1

\(A=\left(\dfrac{2\sqrt{x}+x}{x\sqrt{x}-1}-\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}+2}{x+\sqrt{x}+1}\)

\(=\dfrac{x+2\sqrt{x}-x-\sqrt{x}-1}{x\sqrt{x}-1}\cdot\dfrac{x+\sqrt{x}+1}{\sqrt{x}+2}\)

\(=\dfrac{1}{\sqrt{x}+2}\)

c: Khi x=9-4 căn 5 thì \(A=\dfrac{1}{\sqrt{5}-2+2}=\dfrac{\sqrt{5}}{5}\)

d: căn x+2>=2

=>A<=1/2

Dấu = xảy ra khi x=0