Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P=\(\frac{x^3-6x^2+11x-12}{x^2-5x+4}\)
=\(\frac{x^3-4x^2-2x^2+8x+3x-12}{x^2-x-4x+4}\)
=\(\frac{\left(x-4\right)\left(x^2-2x+3\right)}{\left(x-1\right)\left(x-4\right)}\)
=\(\frac{x^2-2x+3}{x-1}\)
b,
\(\frac{x^2-2x+3}{x-1}\) =\(2x-x^2-\left(\frac{3}{x-1}\right)\) \(\Leftrightarrow\) x-1 \(\in\) (Ư)3
\(\begin{cases}x-1=3\\x-1=-3\end{cases}\) \(\Leftrightarrow\) x1=4 ,x2=-2
vậy x={4,-2}
\(A=\frac{2x-9}{x^2-5x+6}-\frac{x+3}{x-2}-\frac{2x+4}{3-x}\)
a) ĐKXĐ : \(\hept{\begin{cases}x\ne2\\x\ne3\end{cases}}\)
\(A=\frac{2x-9}{\left(x-2\right)\left(x-3\right)}-\frac{x+3}{x-2}+\frac{2x+4}{x-3}\)
\(=\frac{2x-9}{\left(x-2\right)\left(x-3\right)}-\frac{\left(x+3\right)\left(x-3\right)}{\left(x-2\right)\left(x-3\right)}+\frac{\left(2x+4\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}\)
\(=\frac{2x-9}{\left(x-2\right)\left(x-3\right)}-\frac{x^2-9}{\left(x-2\right)\left(x-3\right)}+\frac{2x^2-8}{\left(x-2\right)\left(x-3\right)}\)
\(=\frac{2x-9-x^2+9+2x^2-8}{\left(x-2\right)\left(x-3\right)}\)
\(=\frac{x^2+2x-8}{\left(x-2\right)\left(x-3\right)}=\frac{\left(x-2\right)\left(x+4\right)}{\left(x-2\right)\left(x-3\right)}=\frac{x+4}{x-3}\)
b) Ta có : \(A=\frac{x+4}{x-3}=\frac{x-3+7}{x-3}=1+\frac{7}{x-3}\)
Để A đạt giá trị nguyên thì \(\frac{7}{x-3}\)đạt giá trị nguyên
=> 7 ⋮ x - 3
=> x - 3 ∈ Ư(7) = { ±1 ; ±7 }
x-3 | 1 | -1 | 7 | -7 |
x | 4 | 2 | 10 | -4 |
So với ĐKXĐ ta thấy x = 4 , x = 10 , x = -4 thỏa mãn
Vậy với x ∈ { ±4 ; 10 } thì A đạt giá trị nguyên
(....) dùng để nhìn được chữ số ở phân số cuối cùng thôi, ko dùng để làm gì.
( ác ) là từ ( các )
(gia strij) là từ ( giá trị )
a) \(A=\frac{2x}{x+3}-\frac{x+1}{3-x}-\frac{3-11x}{x^2-9}\)
\(\Leftrightarrow A=\frac{2x}{x+3}+\frac{x+1}{x-3}-\frac{3-11x}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow A=\frac{2x\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}+\frac{\left(x+1\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{3-11x}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow A=\frac{2x^2-6x}{\left(x+3\right)\left(x-3\right)}+\frac{x^2+4x+3}{\left(x-3\right)\left(x+3\right)}-\frac{3-11x}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow A=\frac{3x^2-13x}{x^2-9}\)
\(A=\frac{2x}{x+3}-\frac{x+1}{3-x}-\frac{3-11x}{x^2-9}\)
a) ĐK : x ≠ ±3
\(=\frac{2x}{x+3}+\frac{x+1}{x-3}-\frac{3-11x}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{2x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}+\frac{\left(x+1\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{3-11x}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{2x^2-6x}{\left(x-3\right)\left(x+3\right)}+\frac{x^2+4x+3}{\left(x-3\right)\left(x+3\right)}-\frac{3-11x}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{2x^2-6x+x^2+4x+3-3+11x}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{3x^2+9x}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{3x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{3x}{x-3}\)
b) Để A < 2
=> \(\frac{3x}{x-3}< 2\)
<=> \(\frac{3x}{x-3}-2< 0\)
<=> \(\frac{3x}{x-3}-\frac{2x-6}{x-3}< 0\)
<=> \(\frac{3x-2x+6}{x-3}< 0\)
<=> \(\frac{x+6}{x-3}< 0\)
Xét hai trường hợp :
1. \(\hept{\begin{cases}x+6>0\\x-3< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>-6\\x< 3\end{cases}}\Leftrightarrow-6< x< 3\)
2. \(\hept{\begin{cases}x+6< 0\\x-3>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< -6\\x>3\end{cases}}\)( loại )
Vậy -6 < x < 3
\(P=\frac{x^3-6x^2+11x-12}{x^2-5x+4}\)
\(=\frac{\left(x^3-4x^2\right)-\left(2x^2-8x\right)+\left(3x-12\right)}{\left(x^2-4x\right)-\left(x-4\right)}\)
\(=\frac{x^2\left(x-4\right)-2x\left(x-4\right)+3\left(x-4\right)}{x\left(x-4\right)-\left(x-4\right)}\)
\(=\frac{\left(x-4\right)\left(x^2-2x+3\right)}{\left(x-4\right)\left(x-1\right)}\)
\(=\frac{x^2-2x+3}{x-1}\)
Để P nguyên thì \(\frac{x^2-2x+3}{x-1}\) nguyên
\(\Rightarrow x^2-2x+3⋮x-1\)
\(\Rightarrow\left(x-1\right)^2+2⋮x-1\)
\(\Leftrightarrow x-1\in\left\{1;2;-1;-2\right\}\)
\(\Leftrightarrow x\in\left\{2;3;0;-1\right\}\)