K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 6 2023

(a) Điều kiện : \(x\ne-1.\)

Ta có : \(P=\dfrac{x^4+x}{x^2-x+1}+1-\dfrac{2x^2+3x+1}{x+1}\)

\(=\dfrac{x\left(x^3+1\right)}{x^2-x+1}+1-\dfrac{\left(2x+1\right)\left(x+1\right)}{x+1}\)

\(=\dfrac{x\left(x+1\right)\left(x^2-x+1\right)}{x^2-x+1}+1-\left(2x+1\right)\)

\(=x\left(x+1\right)+1-2x-1\)

\(=x^2-x.\)

Vậy : Với mọi \(x\ne-1\) thì \(P=x^2-x.\)

 

(b) Ta có : \(P=x^2-x\)

\(=\left[x^2-2\cdot x\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\right]-\left(\dfrac{1}{2}\right)^2\)

\(=\left(x-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)

Vậy : \(MinP=-\dfrac{1}{4}.\) Dấu đẳng thức xảy ra khi và chỉ khi \(x=\dfrac{1}{2}.\)

28 tháng 9 2023

a) P = 2x(-3x + 2) - (x + 2)² + 8x² - 1

= -6x² + 4x - x² - 4x - 4 + 8x² - 1

= (-6x² - x² + 8x²) + (4x - 4x) + (-4 - 1)

= x² - 5

b) Thay x = 3 vào P, ta được:

P = 3² - 5

= 4

c) Để P = -1 thì x² - 5 = -1

x² = -1 + 5

x² = 4

x = 2 hoặc x = -2

Vậy x = 2; x = -2 thì P = -1

28 tháng 9 2023

\(a,P=2x\left(-3x+2\right)-\left(x+2\right)^2+8x^2-1\)

\(=-6x^2+4x-\left(x^2+4x+4\right)+8x^2-1\)

\(=-6x^2+4x-x^2-4x-4+8x^2-1\)

\(=\left(-6x^2-x^2+8x^2\right) +\left(4x-4x\right)+\left(-4-1\right)\)

\(=x^2-5\)

Vậy \(P=x^2-5\).

\(b,\) Ta có: \(P=x^2-5\)

Thay \(x=3\) vào \(P\), ta được:

\(P=3^2-5=9-5=4\)

Vậy \(P=4\) khi \(x=3\).

\(c,\) Có: \(P=-1\)

\(\Leftrightarrow x^2-5=-1\)

\(\Leftrightarrow x^2=4\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

Vậy \(P=-1\) khi \(x\in\left\{2;-2\right\}\).

#\(Toru\)

12 tháng 12 2021

cứuuuuuuuuuuu

 

19 tháng 12 2021

a: \(P=\dfrac{2x^2-1-x^2+1+3x}{x\left(x+1\right)}=\dfrac{x^2+3x}{x\left(x+1\right)}=\dfrac{x+3}{x+1}\)

AH
Akai Haruma
Giáo viên
26 tháng 5 2023

Lời giải:
\(P=\left[\frac{\sqrt{x}+1}{(\sqrt{x}+1)(\sqrt{x}-1)}+\frac{x}{\sqrt{x}(\sqrt{x}-1)}\right]:\frac{\sqrt{x}+1}{\sqrt{x}}\)

\(=\left[\frac{1}{\sqrt{x}-1}+\frac{\sqrt{x}}{\sqrt{x}-1}\right].\frac{\sqrt{x}}{\sqrt{x}+1}\)

\(=\frac{\sqrt{x}+1}{\sqrt{x}-1}.\frac{\sqrt{x}}{\sqrt{x}+1}=\frac{\sqrt{x}}{\sqrt{x}-1}\)

b. Áp dụng BĐT AM-GM

\(M=P\sqrt{x}=\frac{x}{\sqrt{x}-1}=\frac{x-1+1}{\sqrt{x}-1}=\sqrt{x}+1+\frac{1}{\sqrt{x}-1}\)

\(=(\sqrt{x}-1)+\frac{1}{\sqrt{x}-1}+2\geq 2\sqrt{(\sqrt{x}-1).\frac{1}{\sqrt{x}-1}}+2=2+2=4\)

Vậy $M_{\min}=4$ khi $\sqrt{x}-1=\frac{1}{\sqrt{x}-1}$

$\Rightarrow \sqrt{x}-1=0$

$\Leftrightarrow x=1$

AH
Akai Haruma
Giáo viên
6 tháng 11 2023

Bạn nên gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn.

a: \(P=\dfrac{1}{x+1}-\dfrac{x^3-x}{x^2+1}\cdot\dfrac{1}{x^2+2x+1}-\dfrac{1}{x^2-1}\)

\(=\dfrac{1}{x+1}-\dfrac{x\left(x^2-1\right)}{x^2+1}\cdot\dfrac{1}{\left(x+1\right)^2}-\dfrac{1}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{1}{x+1}-\dfrac{x\left(x-1\right)}{\left(x^2+1\right)\left(x+1\right)}-\dfrac{1}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x-1-1}{\left(x+1\right)\left(x-1\right)}-\dfrac{x\left(x-1\right)}{\left(x^2+1\right)\left(x+1\right)}\)

\(=\dfrac{x-2}{\left(x+1\right)\left(x-1\right)}-\dfrac{x\left(x-1\right)}{\left(x^2+1\right)\left(x+1\right)}\)

\(=\dfrac{\left(x-2\right)\left(x^2+1\right)-x\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)\left(x^2+1\right)}\)

\(=\dfrac{x^3+x-2x^2-2x-x^3+2x^2-x}{\left(x+1\right)\left(x-1\right)\left(x^2+1\right)}\)

\(=\dfrac{-2x}{\left(x+1\right)\left(x-1\right)\left(x^2+1\right)}\)

19 tháng 6 2021

a) đk: x khác 1; \(\dfrac{3}{2}\)

 \(P=\left[\dfrac{2x}{\left(2x-3\right)\left(x-1\right)}-\dfrac{5}{2x-3}\right]:\left(\dfrac{3-3x+2}{1-x}\right)\)

\(\dfrac{2x-5\left(x-1\right)}{\left(2x-3\right)\left(x-1\right)}:\dfrac{5-3x}{1-x}\)

\(\dfrac{-3x+5}{\left(2x-3\right)\left(x-1\right)}.\dfrac{1-x}{-3x+5}=\dfrac{-1}{2x-3}\)

b) Có \(\left|3x-2\right|+1=5\)

<=> \(\left|3x-2\right|=4\)

<=> \(\left[{}\begin{matrix}3x-2=4< =>x=2\left(Tm\right)\\3x-2=-4< =>x=\dfrac{-2}{3}\left(Tm\right)\end{matrix}\right.\)

TH1: Thay x = 2 vào P, ta có:

P = \(\dfrac{-1}{2.2-3}=-1\)

TH2: Thay x = \(\dfrac{-2}{3}\)vào P, ta có:

P = \(\dfrac{-1}{2.\dfrac{-2}{3}-3}=\dfrac{3}{13}\)

c) Để P > 0

<=> \(\dfrac{-1}{2x-3}>0\)

<=> 2x - 3 <0

<=> x < \(\dfrac{3}{2}\) ( x khác 1)

d) P = \(\dfrac{1}{6-x^2}\)

<=> \(\dfrac{-1}{2x-3}=\dfrac{1}{6-x^2}\)

<=> \(\dfrac{-1}{2x-3}=\dfrac{-1}{x^2-6}\)

<=> 2x - 3 = x2 - 6

<=> x2 - 2x - 3 = 0

<=> (x-3)(x+1) = 0

<=> \(\left[{}\begin{matrix}x=-1\left(Tm\right)\\x=3\left(Tm\right)\end{matrix}\right.\)

7 tháng 11 2021

\(a,P=\left[\dfrac{x+1}{3x\left(x+1\right)}-\dfrac{2x-1}{3x\left(2x-1\right)}-1\right]\cdot\dfrac{2x}{1-x}\left(x\ne1;x\ne-1;x\ne0\right)\\ P=\left(\dfrac{1}{3x}-\dfrac{1}{3x}-1\right)\cdot\dfrac{2x}{1-x}\\ P=-1\cdot\dfrac{2x}{1-x}=\dfrac{2x}{x-1}\\ b,P=2+\dfrac{2}{x-1}\in Z\\ \Leftrightarrow x-1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\\ \Leftrightarrow x\in\left\{2;3\right\}\left(x\ne-1;x\ne0\right)\\ c,P\le1\Leftrightarrow\dfrac{2x}{x-1}-1\le0\\ \Leftrightarrow\dfrac{x+1}{x-1}\le0\\ \Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+1\le0\\x-1>0\end{matrix}\right.\\\left\{{}\begin{matrix}x+1\ge0\\x-1< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow-1\le x< 1\)

a: \(P=\left(\dfrac{x+1}{3x\left(x+1\right)}-\dfrac{2x-1}{3x\left(2x-1\right)}-1\right)\cdot\dfrac{2x}{x-1}\)

\(=\dfrac{1-1-3x}{3x}\cdot\dfrac{2x}{x-1}\)

\(=\dfrac{-3x}{3x}\cdot\dfrac{2x}{x-1}=\dfrac{-2x}{x-1}\)