Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) Ta có: \(P=1+\dfrac{3}{x^2+5x+6}:\left(\dfrac{8x^2}{4x^3-8x^2}-\dfrac{3x}{3x^2-12}-\dfrac{1}{x+2}\right)\)
\(=1+\dfrac{3}{\left(x+2\right)\left(x+3\right)}:\left(\dfrac{8x^2}{4x^2\left(x-2\right)}-\dfrac{3x}{3\left(x-2\right)\left(x+2\right)}-\dfrac{1}{x+2}\right)\)
\(=1+\dfrac{3}{\left(x+2\right)\left(x+3\right)}:\left(\dfrac{4}{x-2}-\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{1}{x+2}\right)\)
\(=1+\dfrac{3}{\left(x+2\right)\left(x+3\right)}:\dfrac{4\left(x+2\right)-x-\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=1+\dfrac{3}{\left(x+2\right)\left(x+3\right)}\cdot\dfrac{\left(x-2\right)\left(x+2\right)}{4x+8-x-x+2}\)
\(=1+3\cdot\dfrac{\left(x-2\right)}{\left(x+3\right)\left(2x+10\right)}\)
\(=1+\dfrac{3\left(x-2\right)}{\left(x+3\right)\left(2x+10\right)}\)
\(=\dfrac{\left(x+3\right)\left(2x+10\right)+3\left(x-2\right)}{\left(x+3\right)\left(2x+10\right)}\)
\(=\dfrac{2x^2+10x+6x+30+3x-6}{\left(x+3\right)\left(2x+10\right)}\)
\(=\dfrac{2x^2+19x-6}{\left(x+3\right)\left(2x+10\right)}\)
a) - Bạn quy đồng tính giá trị trong ngoặc trước (mẫu chung là 3x(x-1))
- Chia với số ngoài ngoặc rồi rút gọn các thừa số chung của tử và mẫu.
- Lấy kết quả vừa tìm được trừ với số kia (quy đồng nếu không cùng mẫu)
b) Dùng kết quả rút gọn được ở câu a và thay vào x = 6013
a) P = 2x(-3x + 2) - (x + 2)² + 8x² - 1
= -6x² + 4x - x² - 4x - 4 + 8x² - 1
= (-6x² - x² + 8x²) + (4x - 4x) + (-4 - 1)
= x² - 5
b) Thay x = 3 vào P, ta được:
P = 3² - 5
= 4
c) Để P = -1 thì x² - 5 = -1
x² = -1 + 5
x² = 4
x = 2 hoặc x = -2
Vậy x = 2; x = -2 thì P = -1
\(a,P=2x\left(-3x+2\right)-\left(x+2\right)^2+8x^2-1\)
\(=-6x^2+4x-\left(x^2+4x+4\right)+8x^2-1\)
\(=-6x^2+4x-x^2-4x-4+8x^2-1\)
\(=\left(-6x^2-x^2+8x^2\right) +\left(4x-4x\right)+\left(-4-1\right)\)
\(=x^2-5\)
Vậy \(P=x^2-5\).
\(b,\) Ta có: \(P=x^2-5\)
Thay \(x=3\) vào \(P\), ta được:
\(P=3^2-5=9-5=4\)
Vậy \(P=4\) khi \(x=3\).
\(c,\) Có: \(P=-1\)
\(\Leftrightarrow x^2-5=-1\)
\(\Leftrightarrow x^2=4\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
Vậy \(P=-1\) khi \(x\in\left\{2;-2\right\}\).
#\(Toru\)
a)\(P=4x^3-\left(2-4x\right).\left(x^2-3x+1\right)\)
\(=4x^3-\left(2x^2-6x+1-4x^2+12x^2-4x\right)\)
\(=4x^3-2x^2+6x-1+4x^2-12x^2+4x\)
\(=4x^3-10x^2+10x-1\)
b) Thay \(x=\frac{-1}{2}\) vào biểu thức trên
Ta Có : \(4.\left(\frac{-1}{2}\right)^3-10.\left(\frac{-1}{2}\right)^2+10.\left(\frac{-1}{2}\right)-1\)
\(=\frac{-1}{2}-\frac{5}{2}-5-1\)
\(=-3-5-1\)
\(=-8-1=-9\)
thanks bạn ạ