K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
31 tháng 7 2020

Lời giải:

$P=a^4+b^4-ab=(a^2+b^2)^2-2a^2b^2-ab$

$=(3-ab)^2-2a^2b^2-ab=-a^2b^2+9-7ab=-[(ab)^2+7ab-9]$

Ta thấy:

$3=a^2+b^2+ab=(a-b)^2+3ab\Rightarrow 3ab=3-(a-b)^2\leq 3\Rightarrow ab\leq 1$

$3=a^2+b^2+ab=(a+b)^2-ab\Rightarrow ab=(a+b)^2-3\geq -3$

Vậy $1\geq ab\geq -3(*)$

Ta có:

$(ab)^2+7ab-9=ab(ab-1)+8(ab-1)-1=(ab+8)(ab-1)-1$. Vì $(*)$ nên $(ab+8)(ab-1)\leq 0$

$\Rightarrow (ab)^2+7ab-9=(ab+8)(ab-1)-1\leq -1$

$\Rightarrow P\geq 1$ hay $P_{\min}=1$

Mặt khác:

$(ab)^2+7ab-9=ab(ab+3)+4(ab+3)-3=(ab+3)(ab+4)-3\geq -3$ do $ab\geq -3$

$\Rightarrow P=-[(ab)^2+7ab-9]\leq 3$ hay $P_{\max}=3$

4 tháng 6 2019

#)Giải :

Ta có : \(P=a^4+b^4+2-2-ab\)

Áp dụng BĐT cô si, ta có : 

\(a^4+1\ge2a^2\)dấu = xảy ra khi a = 1

\(b^4+1\ge2b^2\)dấu = xảy ra khi b = 1

Khi đó \(P\ge2a^2+2b^2-2-ab\)

           \(P\ge2\left(a^2+b^2+ab\right)-2-3ab\)

           \(P\ge4-3ab\)( thay \(a^2+b^2+ab=3\)vào ) (1)

Mặt khác \(a^2+b^2\ge2ab\)

Khi đó \(a^2+b^2+ab=3\ge2ab+ab=3ab\)

\(\Rightarrow ab\le1\)(2)

Từ (1) và (2)

Ta có : \(P\ge4-3ab\ge4-3=1\)

Vậy P đạt GTNN là 1 khi a = b = 1

                #~Will~be~Pens~#

23 tháng 5 2021

,

NV
23 tháng 5 2021

Ngắn gọn thì đây là 1 bài toán không giải được (min max tồn tại, nhưng không thể tìm được)

Cực trị xảy ra tại \(x=\dfrac{a}{b}\) là nghiệm của pt bậc 4:

\(7x^4+11x^3-3x^2-4x-2=0\)

Là một pt không thể phân tích về các pt bậc thấp hơn

9 tháng 12 2018

2) \(S=a+\frac{1}{a}=\frac{15a}{16}+\left(\frac{a}{16}+\frac{1}{a}\right)\)

Áp dụng BĐT AM-GM ta có:

\(S\ge\frac{15a}{16}+2.\sqrt{\frac{a}{16}.\frac{1}{a}}=\frac{15.4}{16}+2.\sqrt{\frac{1}{16}}=\frac{15}{4}+2.\frac{1}{4}=\frac{15}{4}+\frac{1}{2}=\frac{15}{4}+\frac{2}{4}=\frac{17}{4}\)

\(S=\frac{17}{4}\Leftrightarrow a=4\)

Vậy \(S_{min}=\frac{17}{4}\Leftrightarrow a=4\)

9 tháng 12 2018

kudo shinichi sao cách làm giống của thầy Hồng Trí Quang vậy bạn?

\(S=a+\frac{1}{a}=\frac{15}{16}a+\left(\frac{a}{16}+\frac{1}{a}\right)\ge\frac{15}{16}a+2\sqrt{\frac{1.a}{16.a}}=\frac{15}{16}a+2.\frac{1}{4}\)

\(=\frac{15}{16}.4+\frac{1}{2}=\frac{17}{4}\Leftrightarrow a=4\)

Dấu "=" xảy ra khi a = 4

Vậy \(S_{min}=\frac{17}{4}\Leftrightarrow a=4\)

1 tháng 4 2020

đặt \(t=ab+bc+ca\)

\(=>t=ab+bc+ca\le\frac{1}{3}\left(a+b+c\right)^2=3\)

mặt khác 

\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\)

\(=>a^2+b^2+c^2=9-2\left(ab+bc+ca\right)\)

khi đó 

\(P=\frac{9-2t}{t}\)(zới t nhỏ hơn hoặc = 3)

xét \(f\left(t\right)=\frac{9-2t}{t}\left(t\le3\right)\)

\(f'\left(t\right)=-\frac{9}{t^2}< 0\)

=> f(t) N Biến \(\left(-\infty,3\right)\)

min f(t)=f(3)=1

koo tồn tại max\(f\left(t\right)\)

zậy minP=1 khi a=b=c=1

1 tháng 5 2019

ai giúp với hicc

1 tháng 5 2019

\(a=b=c=1\rightarrow P=5\)ta se cm P=5 la gtln cua P that vay ta se cm

\(5p^3+27r\ge18pq\Leftrightarrow5p^3+27r-18pq\ge0\).theo bdt schur

\(LHS\ge5p^3+3p\left(4q-p^2\right)-18pq=2p\left(p^2-3q\right)\ge0\)

Vay \(P_{max}=5\leftrightarrow a=b=c=1\)

\(a^2+b^2=2\)

\(\Leftrightarrow\left(a+b\right)^2-2ab=2\)

\(\Leftrightarrow2ab=\left(a+b\right)^2-2\)

Theo đề ra: \(P=3\left(a+b\right)+ab\)

\(\Leftrightarrow2P=6\left(a+b\right)+2ab\)

\(=6\left(a+b\right)+\left(a+b\right)^2-2\)

\(=\left(a+b\right)^2+2.3\left(a+b\right)+9-9-2\)

\(=[\left(a+b\right)+3]^2-11\)

\(\Leftrightarrow P=\frac{1}{1}\left(a+b+3\right)^2-\frac{11}{2}\)

Ta có: \(\left(a+b+3\right)^2\ge0\forall a,b\inℝ\)

\(\Leftrightarrow\frac{1}{2}\left(a+b+3\right)^2-\frac{11}{2}\ge\frac{-11}{2}\forall a,b\inℝ\)

\(\Leftrightarrow MinP=\frac{-11}{2}\)