K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(P=\dfrac{-x^4+2x^3-2x+1}{4x^2-1}+\dfrac{8x^2-4x+2}{8x^3+1}\)

\(=\dfrac{\left(1-x^2\right)\left(1+x^2\right)+2x\left(x^2-1\right)}{4x^2-1}+\dfrac{2\left(4x^2-2x+1\right)}{\left(2x+1\right)\left(4x^2-2x+1\right)}\)

\(=\dfrac{\left(1-x^2\right)\left(1+x^2-2x\right)}{4x^2-1}+\dfrac{2}{2x+1}\)

\(=\dfrac{\left(1-x^2\right)\left(x^2-2x+1\right)+4x-2}{4x^2-1}\)

 

 

20 tháng 5 2022

TKS bạn

 

6 tháng 1 2018

https://olm.vn/hoi-dap/question/1027904.html

tk nhé 

^_^

6 tháng 1 2018

\(P=\frac{2x^5-x^4-2x+1}{4x^2-1}+\frac{8x^2-4x+2}{ }\)

\(P=\frac{x^4\left(2x-1\right)-\left(2x-1\right)}{\left(2x-1\right)\left(2x+1\right)}+\frac{2\left(4x^2-2x+1\right)}{\left(2x+1\right)\left(4x^2-2x+1\right)}\)

\(P=\frac{\left(x^4-1\right)\left(2x-1\right)}{\left(2x-1\right)\left(2x+1\right)}+\frac{2}{2x+1}\)

\(P=\frac{x^4-1}{2x+1}+\frac{2}{2x+1}\)

\(P=\frac{x^4+1}{2x+1}\)

Vậy \(P=\frac{x^4+1}{2x+1}\)

22 tháng 2 2019

a, \(A=\frac{4x^2\left(x-2\right)+3\left(x-2\right)}{2x\left(x-2\right)+x-2}\)

\(=\frac{\left(x-2\right)\left(4x^2+3\right)}{\left(x-2\right)\left(2x+1\right)}=\frac{4x^2+3}{2x-1}\left(ĐKXĐ:x\ne2;x\ne-\frac{1}{2}\right)\)

b, \(A\in Z\Leftrightarrow\frac{4x^2+3}{2x-1}\in Z\Leftrightarrow2x+1+\frac{4}{2x-1}\in Z\)

\(\Leftrightarrow\frac{4}{2x-1}\in Z\Leftrightarrow4⋮\left(2x-1\right)\)

\(\Rightarrow2x-1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

Mà 2x - 1 là số lẻ nên \(2x-1\in\left\{-1;1\right\}\Rightarrow x\in\left\{0;1\right\}\) (thỏa mãn ĐKXĐ)