K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2020

1. \(VT=\sqrt{7+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}\)

\(=\sqrt{2^2+2.2.\sqrt{3}+\left(\sqrt{3}\right)^2}-\sqrt{2^2-2.2.\sqrt{3}+\left(\sqrt{3}\right)^2}\)

\(=\sqrt{\left(2+\sqrt{3}\right)^2}-\sqrt{\left(2-\sqrt{3}\right)^2}\)

\(=2+\sqrt{3}-2+\sqrt{3}=VP\)

30 tháng 10 2020

Bài 1.

Ta có : \(\sqrt{7+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}\)

\(=\sqrt{3+4\sqrt{3}+4}-\sqrt{3-4\sqrt{3}+4}\)

\(=\sqrt{\left(\sqrt{3}+2\right)^2}-\sqrt{\left(\sqrt{3}-2\right)^2}\)

\(=\left|\sqrt{3}+2\right|-\left|\sqrt{3}-2\right|\)

\(=\sqrt{3}+2-\left(2-\sqrt{3}\right)\)

\(=\sqrt{3}+2-2+\sqrt{3}=2\sqrt{3}\left(đpcm\right)\)

20 tháng 10 2023

a: \(P=\dfrac{\sqrt{x}-\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{x-1-x+4}\)

\(=\dfrac{1}{\sqrt{x}}\cdot\dfrac{\sqrt{x}-2}{3}=\dfrac{\sqrt{x}-2}{3\sqrt{x}}\)

b: P=1/4

=>\(\dfrac{\sqrt{x}-2}{3\sqrt{x}}=\dfrac{1}{4}\)

=>\(4\left(\sqrt{x}-2\right)=3\sqrt{x}\)

=>\(4\sqrt{x}-8-3\sqrt{x}=0\)

=>\(\sqrt{x}=8\)

=>x=64

c: Khi \(x=4+2\sqrt{3}\) thì \(P=\dfrac{\sqrt{4+2\sqrt{3}}-2}{3\cdot\sqrt{4+2\sqrt{3}}}\)

\(=\dfrac{\sqrt{3}+1-2}{3\left(\sqrt{3}+1\right)}=\dfrac{\sqrt{3}-1}{3\sqrt{3}+3}=\dfrac{2-\sqrt{3}}{3}\)

21 tháng 9 2018

DKXD: \(x\ge0;x\ne1\)

\(P=\left(\frac{1}{\sqrt{x}-1}-\frac{2}{\left(\sqrt{x}-1\right)\left(x+1\right)}\right)\left(\frac{x-\sqrt{x}+1}{x+1}\right)\)

\(=\frac{x-1}{\left(\sqrt{x}-1\right)\left(x+1\right)}.\frac{x-\sqrt{x}+1}{x+1}\)

\(=\frac{\sqrt{x}-1}{x+1}.\frac{x-\sqrt{x}+1}{x+1}\)

\(=\frac{\sqrt{x}^3+1}{\left(x+1\right)^2}\)

b) \(\sqrt{x}^3+1>0;\left(x+1\right)^2>0\) mọi x

\(\Rightarrow A>0\forall x\ge0;x\ne1\)

25 tháng 3 2017

\(B=\left(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{x-\sqrt{x}}\right)\div\left(\frac{1}{\sqrt{x}+1}+\frac{2}{x-1}\right)\)

\(=\frac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\div\frac{\sqrt{x}-1+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x-1}\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\div\frac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\frac{\sqrt{x}+1}{\sqrt{x}}.\left(\sqrt{x}-1\right)\)

\(=\frac{x-1}{\sqrt{x}}\)