Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐKXĐ: \(x\ge0,x\ne1\)
b) \(A=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}+\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\)
\(=\sqrt{x}-1+\sqrt{x}=2\sqrt{x}-1\)
c) \(A=2\sqrt{x}-1< -1\Leftrightarrow2\sqrt{x}< 0\)(vô lý do \(2\sqrt{x}\ge0\forall x\))
Vậy \(S=\varnothing\)
Bài 3:
\(A=\dfrac{x+1-2\sqrt{x}}{\sqrt{x}-1}+\dfrac{x+\sqrt{x}}{\sqrt[]{x}+1}\\ DKXD:x\ne1;x\ge0\\ A=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}+\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\\ A=\sqrt{x}-1+\sqrt{x}\\ A=2\sqrt{x}+1\)
\(C.A< -1\Leftrightarrow2\sqrt{x}-1< -1\\ \Leftrightarrow2\sqrt{x}< 0\\ \Leftrightarrow x< 0\left(ktmdk\right)\\ =>BPTVN:S=\varnothing\)
biểu thức e viết liền quá khó phân biệt ví dụ như x +1 -\(\frac{2\sqrt{x}}{\sqrt{x-1}}\)hay là x +\(\frac{1-\sqrt{2x}}{\sqrt{x-1}}\)
a: ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x\notin\left\{4;9\right\}\end{matrix}\right.\)
\(P=\left(\dfrac{1}{\sqrt{x}+2}-\dfrac{1}{\sqrt{x}-2}\right):\dfrac{\sqrt{x}-3}{4-x}\)
\(=\dfrac{\sqrt{x}-2-\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{4-x}{\sqrt{x}-3}\)
\(=\dfrac{-4\left(4-x\right)}{\left(x-4\right)\left(\sqrt{x}-3\right)}=\dfrac{4}{\sqrt{x}-3}\)
b: P>-1
=>P+1>0
=>\(\dfrac{4}{\sqrt{x}-3}+1>0\)
=>\(\dfrac{4+\sqrt{x}-3}{\sqrt{x}-3}>0\)
=>\(\dfrac{\sqrt{x}+1}{\sqrt{x}-3}>0\)
=>\(\sqrt{x}-3>0\)
=>x>9
a: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
b: Ta có: \(A=\dfrac{x-2\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{x+\sqrt{x}}{\sqrt{x}+1}\)
\(=\sqrt{x}-1+\sqrt{x}\)
\(=2\sqrt{x}-1\)
\(=>A=\left(\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right).\left[\dfrac{\sqrt{x}+1-2}{x-1}\right]\)
\(=>A=\dfrac{\sqrt{x}+1}{\sqrt{x}}.\dfrac{1}{\sqrt{x}+1}=\dfrac{1}{\sqrt{x}}\)
b,\(=>\dfrac{1}{\sqrt{x}}=\dfrac{1}{2}=>\sqrt{x}=2=>x=\sqrt{2}\left(tm\right)\)
a) \(ĐKXĐ:\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
\(A=\dfrac{x+1-2\sqrt{x}}{\sqrt{x}-1}+\dfrac{x+\sqrt{x}}{\sqrt{x}+1}\)
\(A=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}+\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\)
\(A=\sqrt{x}-1+\sqrt{x}\)
\(A=2\sqrt{x}-1\)
b) Để A < -1
\(\Leftrightarrow2\sqrt{x}-1< -1\)
\(\Leftrightarrow2\sqrt{x}< 0\)
\(\Leftrightarrow\sqrt{x}< 0\) (Vô lí)
Vậy không có giá trị nào của x để A < -1
ĐKXĐ : \(x\ne0;x\ne\pm1\)
a) Bạn ghi lại rõ đề.
b) \(B=\dfrac{x-1}{x+1}+\dfrac{3x-x^2}{x^2-1}=\dfrac{x-1}{x+1}+\dfrac{3x-x^2}{\left(x-1\right).\left(x+1\right)}\)
\(=\dfrac{\left(x-1\right)^2+3x-x^2}{\left(x-1\right).\left(x+1\right)}=\dfrac{x+1}{\left(x-1\right).\left(x+1\right)}=\dfrac{1}{x-1}\)
c) \(P=A.B=\dfrac{x^2+x-2}{x.\left(x-1\right)}=\dfrac{\left(x-1\right).\left(x+2\right)}{x\left(x-1\right)}=\dfrac{x+2}{x}=1+\dfrac{2}{x}\)
Không tồn tại Min P \(\forall x\inℝ\)
\(A=\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right).\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\right)\text{x > 0, x ≠ 1}\)
\(A=\dfrac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(A=\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{x-1-x+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\) \(=\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(A=\dfrac{1}{\sqrt{x}\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)^2}\)