K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2021

a) ĐKXĐ: \(x\ge0,x\ne1\)

b) \(A=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}+\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\)

\(=\sqrt{x}-1+\sqrt{x}=2\sqrt{x}-1\)

c) \(A=2\sqrt{x}-1< -1\Leftrightarrow2\sqrt{x}< 0\)(vô lý do \(2\sqrt{x}\ge0\forall x\))

Vậy \(S=\varnothing\)

23 tháng 10 2021

Bài 3:

\(A=\dfrac{x+1-2\sqrt{x}}{\sqrt{x}-1}+\dfrac{x+\sqrt{x}}{\sqrt[]{x}+1}\\ DKXD:x\ne1;x\ge0\\ A=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}+\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\\ A=\sqrt{x}-1+\sqrt{x}\\ A=2\sqrt{x}+1\)

\(C.A< -1\Leftrightarrow2\sqrt{x}-1< -1\\ \Leftrightarrow2\sqrt{x}< 0\\ \Leftrightarrow x< 0\left(ktmdk\right)\\ =>BPTVN:S=\varnothing\)

1: ĐKXĐ: \(a\ge0\)

20 tháng 10 2021

biểu thức e viết liền quá khó phân biệt  ví dụ như x +1 -\(\frac{2\sqrt{x}}{\sqrt{x-1}}\)hay là x +\(\frac{1-\sqrt{2x}}{\sqrt{x-1}}\)

30 tháng 10 2023

a: ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x\notin\left\{4;9\right\}\end{matrix}\right.\)

\(P=\left(\dfrac{1}{\sqrt{x}+2}-\dfrac{1}{\sqrt{x}-2}\right):\dfrac{\sqrt{x}-3}{4-x}\)

\(=\dfrac{\sqrt{x}-2-\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{4-x}{\sqrt{x}-3}\)

\(=\dfrac{-4\left(4-x\right)}{\left(x-4\right)\left(\sqrt{x}-3\right)}=\dfrac{4}{\sqrt{x}-3}\)

b: P>-1

=>P+1>0

=>\(\dfrac{4}{\sqrt{x}-3}+1>0\)

=>\(\dfrac{4+\sqrt{x}-3}{\sqrt{x}-3}>0\)

=>\(\dfrac{\sqrt{x}+1}{\sqrt{x}-3}>0\)

=>\(\sqrt{x}-3>0\)

=>x>9

a: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

b: Ta có: \(A=\dfrac{x-2\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{x+\sqrt{x}}{\sqrt{x}+1}\)

\(=\sqrt{x}-1+\sqrt{x}\)

\(=2\sqrt{x}-1\)

7 tháng 7 2021

\(=>A=\left(\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right).\left[\dfrac{\sqrt{x}+1-2}{x-1}\right]\)

\(=>A=\dfrac{\sqrt{x}+1}{\sqrt{x}}.\dfrac{1}{\sqrt{x}+1}=\dfrac{1}{\sqrt{x}}\)

b,\(=>\dfrac{1}{\sqrt{x}}=\dfrac{1}{2}=>\sqrt{x}=2=>x=\sqrt{2}\left(tm\right)\)

7 tháng 7 2021

\(=>x=4\left(tm\right)\)

28 tháng 12 2020

a) \(ĐKXĐ:\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

\(A=\dfrac{x+1-2\sqrt{x}}{\sqrt{x}-1}+\dfrac{x+\sqrt{x}}{\sqrt{x}+1}\)

\(A=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}+\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\)

\(A=\sqrt{x}-1+\sqrt{x}\)

\(A=2\sqrt{x}-1\)

b) Để A < -1

\(\Leftrightarrow2\sqrt{x}-1< -1\)

\(\Leftrightarrow2\sqrt{x}< 0\)

\(\Leftrightarrow\sqrt{x}< 0\) (Vô lí)

Vậy không có giá trị nào của x để A < -1

 

21 tháng 8 2023

ĐKXĐ : \(x\ne0;x\ne\pm1\)

a) Bạn ghi lại rõ đề.

b) \(B=\dfrac{x-1}{x+1}+\dfrac{3x-x^2}{x^2-1}=\dfrac{x-1}{x+1}+\dfrac{3x-x^2}{\left(x-1\right).\left(x+1\right)}\)

\(=\dfrac{\left(x-1\right)^2+3x-x^2}{\left(x-1\right).\left(x+1\right)}=\dfrac{x+1}{\left(x-1\right).\left(x+1\right)}=\dfrac{1}{x-1}\)

c) \(P=A.B=\dfrac{x^2+x-2}{x.\left(x-1\right)}=\dfrac{\left(x-1\right).\left(x+2\right)}{x\left(x-1\right)}=\dfrac{x+2}{x}=1+\dfrac{2}{x}\)

Không tồn tại Min P \(\forall x\inℝ\)

6 tháng 7 2021

\(A=\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right).\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\right)\text{x > 0, x ≠ 1}\)

\(A=\dfrac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

\(A=\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{x-1-x+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\) \(=\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

\(A=\dfrac{1}{\sqrt{x}\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)^2}\)