Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Gọi số cần tìm có dạng
TH1: 2 số lẻ liên tiếp ở vị trí ab
a có 3 cách chọn
b có 2 cách chọn
c có 4 cách chọn
d có 3 cách chọn
e có 2 cách chọn
TH2:2 số lẻ liên tiếp ở vị trí bc
a có 3 cách chọn
b có 3 cách chọn
c có 2 cách chọn
d có 3 cách chọn
e có 2 cách chọn
TH3: 2 số lẻ liên tiếp ở vị trí cd (tượng tự TH2)
Vậy số cách chọn thỏa mãn yêu cầu đề bài là:
3.2.4.3.2+2.(3.3.2.3.2)=360
Đáp án A
Goi A là số tự nhiên có hai chữ số lẻ khác nhau lấy từ các số 1, 2, 3, 4, 5, 6 số cách chọn được A là A 3 2 = 6 . Số chẵn có 5 chữ số mà hai số lẻ đứng kề nhau phải chứa A và ba trong 4 chữ số 0; 2; 4; 6. Gọi a b c d ; a, b, c, d ∈ {A, 0, 2, 4, 6} là số thỏa mãn yêu cầu bài toán.
*TH1: Nếu d = 0 số cách lập là: 1 A 4 3 = 24 .
*TH2: Nếu d ≠ 0 thì d có 3 cách chọn, a có 3 cách chọn, b có 3 cách chọn, c có 2 cách chọn nên số cách lập là: 3.3.3.2 = 54
Số cách lập: 6(24+54) = 468 cách.
Vì có 3 số lẻ là 1,3,5, nên ta tạo được 6 cặp số kép: 13;31;15;51;35;53
Gọi A là tập các số gồm 4 chữ số được lập từ X={0;13;2;4;6}.
Gọi A1,A2,A3 tương ứng là số các số tự nhiên lẻ gồm 4 chữ số khác nhau được lập từ các chữ số của tập X và 13 đứng ở vị trí thứ nhất, thứ hai và thứ ba.
Ta có:
Nên
Vậy số các số cần lập là: 6.60=360 số.
Chọn A.
gọi số cần tìm là abcdef( có gạch trên đầu b nhé)
với đk a#0 abcdef khác nhau
1; a có 8 cách chọn
b có 7 cách chọn
c có 6 cách chọn
d có 5 cách chọn
e có có 4 cách chọn
f có 3 cách chọn
=> có 20160 số tmycbt
Số tự nhiên chẵn gồm 5 chữ số khác nhau và đúng hai chữ số lẻ có:
· Chọn 2 chữ số lẻ có cach; chọn 3 chữ số chẵn có cách
· Gọi số có 5 chữ số thỏa mãn đề bài là .
· Nếu a5 = 0 thì có 4! Cách chọn .
· Nếu a5 ≠ 0 thì có 2 cách chọn a5 từ 3 số chẵn đã chọn; khi đó có 3 cách chọn a1 ; 3 cách chọn a2 ; 2 cách chọn a3 và 1 cách chọn a1 .
· Theo quy tắc cộng và nhân có 10.10.(1.4!+2.3.3.2.1)=6000 số
Số tự nhiên chẵn gồm 5 chữ số khác nhau và có đúng hai chữ số lẻ đứng cạnh nhau có số.
Suy ra có 6000-3120=2880 số cần tìm.
Chọn D.
gọi số tm yêu cầu là \(\overline{abcde}\)
a)Th1 giả sử abc,abd,abe,acd,ade,ace=1,2,3=> 2 số còn lại có 5.4 cách chọn=> có tất cả 6.3!.4.5=720 số
Th2 giả sử bcd=1,2,3;cde=1,2,3;bce=1,2,3,bde=1,2,3=>a khác 0=>a có 4 cách chọn và số còn lại có 4 cách chọn=>có tất cả 4.4.3!.4=384 cách
=> có tất cả 720+384 =1104 cách chọn số tm
Gọi số cần tim là abcd
Trong số đó luôn có số 4,5,2 đứng cạnh nhau nên ta coi cụm số 4,2,5 là 1 chữ số ⇒ số cần tìm có 2 chữ số
Vì số cần tìm là số chẵn nên d∈{2,4,6,8}
Th1: cụm số 4,2,5 đứng đầu
Xếp 3 số 4,2,5 có 3! cách
Chữ số d có 2 cách
⇒ n1=2.3!=12
TH2: cụm 4,2,5 đứng cuối
d có 2 cách , c có 2 cách, b có 1 cách và a có 6 cách
⇒n2= 2.2.1.6=24
n1+n2 =24+12=36 số
Gọi số có 4 chữ số đó là \(\overline{abcd}\)
TH1: \(d=4\Rightarrow c=5\)
Khi đó cặp ab có \(A_7^2=42\) cách chọn
TH2: \(d\ne4\Rightarrow d\) có 3 cách chọn
Trong bộ abc, chữ số còn lại (ngoài 4 và 5) có 6 cách chọn
Hoán vị 3 chữ số abc sao cho 4 và 5 luôn cạnh nhau: \(2!.2!=4\) cách
\(\Rightarrow3.6.4=72\) số
Tổng cộng: \(42+72=114\) số