Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = - 3\(x\).(\(x-5\)) + 3(\(x^2\) - 4\(x\)) - 3\(x\) - 10
A = - 3\(x^2\) + 15\(x\) + 3\(x^2\) - 12\(x\) - 3\(x\) - 10
A = (- 3\(x^2\) + 3\(x^2\)) + (15\(x\) - 12\(x\) - 3\(x\)) - 10
A = 0 + (3\(x-3x\)) - 10
A = 0 - 10
A = - 10
A(x)=4x4−6x2−7x3−5x−6
B(x)=−5x2+7x3+5x+4−4x4
a/ - Tính:
M(x)=A(x)+B(x)
M(x)=4x4+6x2−7x3−5x−6−5x2+7x3+5x+4−4x4
M(x)=x2−2
- Tìm nghiệm:
M(x)=x2−2=0⇔x2=2⇔x=−√2;x=√2
b/ C(x)+B(x)=A(x)⇒C(x)=A(x)−B(x)
C(x)=4x4−6x2−7x3−5x−6−(−5x2+7x3+5x+4−4x4)
C(x)=4x4−6x2−7x3−5x−6+5x2−7x3−5x−4+4x4
C(x)=8x4−14x3−x2−10x−10
cho đa thức : A(x)=4x^4+6x^2-7x^3-5x-6 và B(x)=-5x^2+x^3+5x+4-4x^4
a)Tính M(x)=A(x)+B(x) rồi tính nghiệm của đa thức M(x)
b)tìm đa thức C(x)sao cho C(x)|+B(x)=A(x)
a)\(A\left(x\right)=2x^4-4x^3-x^2+5x+1\)
\(B\left(x\right)=-2x^4+4x^3+x^2-7x+1\)
\(C\left(x\right)=2x^4-4x^3-x^2+5x+1-2x^4+4x^3+x^2-7x+1\)
\(C\left(x\right)=-2x+2\)
\(D\left(x\right)=2x^4-4x^3-x^2+5x+1+2x^4-4x^3-x^2+7x-1\)
\(D\left(x\right)=4x^4-8x^3-2x^2+12x\)
b)cho C(x) = 0
\(=>-2x+2=0\Rightarrow-2x=-2\Rightarrow x=1\)
a) A(x)= 2x^4--4x^3--x^2+5x+1
B(x)= 2x^4+4x^3+x^2--7x+1
A(x)= 2x^4--4x^3--x^2+5x+1
B(x)= 2x^4+4x^3+x^2--7x+1 C(x)= 4x^4+0+0--2x+2A(x)= 2x^4--4x^3--x^2+5x+1
B(x)= 2x^4+4x^3+x^2--7x+1 D(x)=0--8x^3--2^2+12x+0Bài 1: tìm nghiệm của đa thức.
a) A(x) =\(\frac{1}{3}\)x + 1
⇔ 0 = \(\frac{1}{3}x+1\)
⇔ 0 = x + 3
⇔ -x = 3
⇔ x = -3
b) B(x) = \(\frac{2}{3}\)x +\(\frac{1}{5}\)
⇔ 0 = \(\frac{2}{3}x+\frac{1}{5}\)
⇔ 0 = 10x + 3
⇔ -10x = 3
⇔ x = \(-\frac{3}{10}\)
c) C(x) = (4x-1) . (2x+3)
⇔ 0 = (4x - 1).(2x + 3)
⇔ (4x -1).(2x +3) = 0
⇔ \(\left[{}\begin{matrix}4x-1=0\\2x+3=0\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}x=\frac{1}{4}\\x=-\frac{3}{2}\end{matrix}\right.\)
d) D(x) = (-5x+2).(x-7)
⇔ 0 = (-5x +2).(x - 7)
⇔ (-5x +2).( x -7) = 0
⇔ \(\left[{}\begin{matrix}-5x+2=0\\x-7=0\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}x=\frac{2}{5}\\x=7\end{matrix}\right.\)
e) E(x) = -4x2+8x
⇔ 0 = -4x2 + 8x
⇔ -4x2 + 8x = 0
⇔ -4x.(x-2) = 0
⇔ x.(x-2) = 0
⇔ \(\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Bài 6; tìm đa thức A biết :
a) A + 7x2y - 5xy2 -xy = x2y +8xy2 -5xy
A = x2y + 8xy2 -5xy -7x2y + 5xy2 + xy
A= -6x2y + 13xy2 - 4xy
b) 4x2 -7x +1- A = 3x2 -7x -1
⇔ 4x2 + 1 - A = 3x2 -1
-A= 3x2 -1 -4x2 -1
-A= -x2 - 2
A= x2 + 2
a) \(A=\)\(x^4\)\(+4x^3\)\(+2x^2\)\(+x\)\(-7\)
\(B=\)\(2x^4\)\(-4x^3\)\(-2x^2\)\(-5x\)\(+3\)
b) f(x)= A(x)+B(x)= \(3x^4-4x\)\(-4\)
g(x)=A(x)-B(x) = \(-x^4+8x^3+4x^2+6x\)\(-10\)
c) g(x)= \(0^4+8.0^3+4.0^2\)\(+6.0\)\(-10\)
= -10
g(-2)=\(-2^4+8.-2^3+4.-2^2+6.-2\)\(-10\)
=\(-54\)