K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

a) A = 2x6 + (-5x3) + ( -3x5) + x3 + \(\dfrac{3}{5}{x^2}\)+(\( - \dfrac{1}{2}{x^2}\)) + 8 + ( -3x)

= 2x6 + ( -3x5) + [(-5x3) + x3 ]+ [\(\dfrac{3}{5}{x^2}\)+(\( - \dfrac{1}{2}{x^2}\))] + ( -3x) + 8

= 2x6 – 3x5 – 4x3 +\(\dfrac{1}{{10}}\)x2 – 3x + 8

b) Hệ số cao nhất: 2

Hệ số tự do: 8

Hệ số của x2 là: \(\dfrac{1}{{10}}\)

`a,`

`A=2x^6+(-5x^3)+(-3x^6)+x^3+(-3/5x^2)+(-1/2x^2)+8+(-3x)`

`A=2x^6-5x^3-3x^6+x^3-3/5x^2-1/2x^2+8-3x`

`A=(2x^6-3x^6)+(-5x^3+x^3)+(-3/5x^2-1/2x^2)-3x+8`

`A=-x^6-4x^3-1,1x^2-3x+8`

`b,`

Hệ số cao nhất của đa thức: `-1`

Hệ số tự do: `8`

Hệ số của `x^2: -1,1 (-11/10)`

a: A=2x^6-3x^6-5x^3+x^3-3/5x^2-1/2x^2-3x+8

=-x^6-4x^3-11/10x^2-3x+8

b: Hệ số cao nhất là -1

Hệ số tự do là 8

Hệ số của x^2 là -11/10

27 tháng 3 2022

a) \(x^5-3x^2+x^4-4x-x^5+5x^4+x^2-1\)

\(=\left(x^5-x^5\right)+\left(-3x^2+x^2\right)+\left(x^4+5x^4\right)-4x-1\)

\(=-2x^2+6x^4-4x-1\)

\(=6x^4-2x^2-4x-1\)

- Hệ số tự do: \(-1\)

- Hệ số cao nhất:  \(6\)

b) \(x-x^9+x^2-5x^3+x^6-x+3x^9+2x^6-x^3+7\)

\(=\) \((x-x)+(x^9+3x^9)+x^2+(-5x^3-x^3)+(x^6+2x^6)+7\)

\(=4x^9+x^2-6x^3+3x^6+7\)

\(=4x^9+3x^6-6x^3+x^2+7\)

- Hệ số tự do: \(7\)

- Hệ số cao nhất: \(4\)

a: \(C\left(x\right)=x^3+3x^2-x+6\)

\(D\left(x\right)=-x^3-2x^2+2x-6\)

b: Bậc của C(x) là 3

Hệ số tự do của D(x) là -6

c: \(C\left(2\right)=8+3\cdot4-2+6=20-2+6=24\)

d: \(C\left(x\right)+D\left(x\right)=x^2+x\)

a. C(x)=x3+3x2−x+6

D(x)=−x3−2x2+2x−6

b. Bậc của C(x) là 3

Hệ số tự do của D(x) là -6

c. C(2)=8+3⋅4−2+6=20−2+6=24

d. 

a: \(M\left(x\right)=2x^2+3\)

\(N\left(x\right)=3x^3-2x^2+x\)

b: \(M\left(x\right)+N\left(x\right)=3x^3+x+3\)

\(M\left(x\right)-N\left(x\right)=2x^2+3-3x^3+2x^2-x=-3x^3+2x^2-x+3\)

14 tháng 5 2022

Câu c : M(x)=2x^2+3 

ta có : x≥ 0 với mọi x 

=> 2x≥ 0 => 2x + 3 ≥ 3 > 0=> M(x) ≠ 0 với mọi xVậy đa thức M(x) không có nghiệm

Sửa đề: \(P=3x^3+x^2+4x^4-x-3x^3+5x^4+x^2-6\)

Ta có: \(P=3x^3+x^2+4x^4-x-3x^3+5x^4+x^2-6\)

\(=9x^4+2x^2-x-6\)

Ta có: \(Q\left(x\right)=2x^3-x^4-\dfrac{1}{2}x^2-3+\dfrac{3}{4}x-\dfrac{1}{3}x^2+x^4-\dfrac{7}{4}x\)

\(=2x^3-\dfrac{5}{6}x^2-x-3\)

a: \(M\left(x\right)=9x^4+2x^2-x-6\)

\(N\left(x\right)=-x^4-x^3-2x^2+4x+1\)

b: \(P\left(x\right)=8x^4-x^3+3x-5\)

\(Q\left(x\right)=10x^4+x^3+4x^2-5x-7\)

ko bt làm=))

 

9 tháng 8 2018

x7 – x4 + 2x3 – 3x4 – x2 + x7 – x + 5 – x3

= (x7 + x7) – (x4 + 3x4) + (2x3 – x3) – x2 – x + 5

= 2x7 – 4x4 + x3 – x2 – x + 5

Sắp xếp: 5 – x – x2 + x3 – 4x4 + 2x7

Hệ số cao nhất là 2, hệ số tự do là 5.

HQ
Hà Quang Minh
Giáo viên
17 tháng 9 2023

a) \(\begin{array}{l}P(x) = {x^2}({x^2} + x + 1) - 3x(x - a) + \dfrac{1}{4} = {x^4} + {x^3} + {x^2} - 3{x^2} + 3ax + \dfrac{1}{4}\\ = {x^4} + {x^3} - 2{x^2} + 3ax + \dfrac{1}{4}\end{array}\).

b) Các hệ số có trong đa thức P(x) là: 1; 1; – 2; 3a; \(\dfrac{1}{4}\).

Tổng các hệ số bằng \(\dfrac{5}{2}\)hay:

\(\begin{array}{l}1 + 1 - 2 + 3a + \dfrac{1}{4} = \dfrac{5}{2}\\ \to 3a = \dfrac{9}{4}\\ \to a = \dfrac{3}{4}\end{array}\)

Vậy \(a = \dfrac{3}{4}\).

a) \(A\left(x\right)=x^7-2x^6+2x^3-2x^4-x^7+x^5+2x^6-x+5+2x^4-x^5\)

\(A\left(x\right)=(x^7-x^7)+(-2x^6+2x^6)+2x^3+(-2x^4+2x^4)+(x^5-x^5)-x+5\)

\(A\left(x\right)=2x^3-x+5\)

-  Bậc của đa thức A(x) là 3

 - Hệ số tự do: 5

- Hệ số cao nhất: 2

 

b) \(B\left(x\right)=-3x^5+4x^4-2x+\dfrac{1}{2}-2x^4+3x-x^5-2x^4+\dfrac{5}{2}+x\)

\(B\left(x\right)=(-3x^5-x^5)+(4x^4-2x^4-2x^4)+(-2x+x+3x)+\left(\dfrac{1}{2}+\dfrac{5}{2}\right)\)

\(B\left(x\right)=-4x^5+2x+3\)

-  Bậc của đa thức B(x) là 5

 - Hệ số tự do: 3

- Hệ số cao nhất: \(-4\)

 

c) \(C\left(y\right)=5y^2-2.\left(y+1\right)+3y.\left(y^2-2\right)+5\)

   \(C\left(y\right)=5y^2-2y-2+3y\left(y^2-2\right)+5\) 

   \(C\left(y\right)=5y^2-2y-2+3y^3-6y+5\)

   \(C\left(y\right)=5y^2-2y+3+3y^3-6y\)

   \(C\left(y\right)=5y^2-8y+3+3y^3\)

   \(C\left(y\right)=3y^3+5y^2-8y+3\)

-  Bậc của đa thức C(y) là 3

 - Hệ số tự do: 3

- Hệ số cao nhất: 3