K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2022

Vô phần câu hỏi tương tự là có  bài giải chi tiết 

HT

21 tháng 3 2022

tl

bn chỉ cần tìm câu hỏi tương tự sẽ có bài giải chi tiết

HT

24 tháng 2 2018

bài này đùng Shinra nhé 

ưu điểm của  shinra : rất khó tìm ra lỗi sai , nếu vừa nói vừa làm thì có thể thầy cô cũng ko nhận ra :)  

nhược điểm : nếu bị để ý kĩ thì SM  luôn đấy :)

áp dụng BDT cô si ta có :

\(a+1+1\ge3\sqrt[3]{a}.\) tương tự với các mẫu còn lại

vì nó năm ở dưới mẫu dấu > thành dấu <

\(vt\le\frac{1}{3\sqrt[3]{a}}+\frac{1}{3\sqrt[3]{b}}+\frac{1}{3\sqrt[3]{c}}.\)

\(abc=1\Leftrightarrow a=\frac{1}{bc}\)

\(VT\le\frac{1}{\frac{3}{\sqrt[3]{bc}}}+\frac{1}{\frac{3}{\sqrt[3]{ac}}}+\frac{1}{\frac{3}{\sqrt[3]{ab}}}=\frac{\sqrt[3]{bc}+\sqrt[3]{ac}+\sqrt[3]{ab}}{3}\) 

có  \(a+b+C\ge3\sqrt[3]{abc}=3\) ( abc=1)  ( nhớ kĩ cái này là chìa khóa để rứt điểm bài này ko được quên nha )

nhân cả tử cả mẫu cho 3 ta được

\(VT\le\frac{3\sqrt[3]{bc}+3\sqrt[3]{ac}+3\sqrt[3]{ab}}{9}\)

\(3\sqrt[3]{b.c.1}\le\left(b+c+1\right)\) tương tự với các số hạng còn lại ta được

đến đây ta dùng Shinra nhé

\(VT\le\frac{2\left(a+b+c\right)+3}{9}=\frac{6+3}{9}=1\) 

7 tháng 8 2019

BĐT <=> \(\frac{2}{a^2+2}+\frac{2}{b^2+2}+\frac{2}{c^2+2}\le2\)

\(\Leftrightarrow1-\frac{a^2}{a^2+2}+1-\frac{b^2}{b^2+2}+1-\frac{c^2}{c^2+2}\le2\)

\(\Leftrightarrow\frac{a^2}{a^2+2}+\frac{b^2}{b^2+2}+\frac{c^2}{c^2+2}\ge1\)

Theo BĐT Svacxo:

\(VT\ge\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+6}=\frac{a^2+b^2+c^2+2\left(ab+bc+ca\right)}{a^2+b^2+c^2+6}=\frac{a^2+b^2+c^2+6}{a^2+b^2+c^2+6}=1\)

Vậy ta có đpcm.

P/s: Đúng ko ta?

9 tháng 1 2020

Game này ez thôi bạn

\(bđt\Leftrightarrow\frac{a}{a+2}+\frac{b}{b+2}+\frac{c}{c+2}\ge1\)

\(\left(a;b;c\right)\rightarrow\left(\frac{x}{y};\frac{y}{z};\frac{z}{x}\right)\Rightarrow bđt\Leftrightarrow\sum\frac{x}{x+2y}\ge1\)

Bđt trên đúng do: \(\sum\frac{x}{x+2y}\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=1\rightarrowđpcm\)

\("="\Leftrightarrow a=b=c=1\)

9 tháng 1 2020

Không hiểu lắm =='

20 tháng 2 2020

Ai giúp mình với :(( Mình cần gấp ạ

20 tháng 2 2020

Áp dụng BĐT Bu-nhi-a-cốp-ski,ta có :

\(\left(a^2+b^2+1^2\right)\left(1^2+1^2+c^2\right)\ge\left(a.1+b.1+c.1\right)^2=\left(a+b+c\right)^2\)

\(\Rightarrow\frac{1}{1+a^2+b^2}=\frac{1+1+c^2}{\left(a^2+b^2+1\right)\left(1+1+c^2\right)}\le\frac{2+c^2}{\left(a+b+c\right)^2}\)

Tương tự : \(\frac{1}{1+b^2+c^2}=\frac{1+1+a^2}{\left(1+b^2+c^2\right)\left(1+1+a^2\right)}\le\frac{2+a^2}{\left(a+b+c\right)^2}\)

  \(\frac{1}{1+c^2+a^2}=\frac{1+1+b^2}{\left(1+c^2+a^2\right)\left(1+1+b^2\right)}\le\frac{2+b^2}{\left(a+b+c\right)^2}\)

Cộng từng vế BĐT lại, ta được : 

\(\frac{1}{1+a^2+b^2}+\frac{1}{1+b^2+c^2}+\frac{1}{1+c^2+a^2}\le\frac{6+a^2+b^2+c^2}{\left(a+b+c\right)^2}=\frac{6+a^2+b^2+c^2}{a^2+b^2+c^2+2\left(ab+bc+ac\right)}=1\)

Vậy BĐT đã được chứng minh 

14 tháng 11 2019

Đặt \(\left(a;b;c\right)\rightarrow\left(x^3;y^3;z^3\right)\Rightarrow xyz=1\)

Ta có:

\(\frac{1}{a+b+1}+\frac{1}{b+c+1}+\frac{1}{c+a+1}\)

\(=\frac{1}{x^3+y^3+1}+\frac{1}{y^3+z^3+1}+\frac{1}{z^3+x^3+1}\left(1\right)\)

Áp dụng BĐT phụ \(x^3+y^3\ge xy\left(x+y\right)\)

\(\Rightarrow\left(1\right)\le\frac{1}{xy\left(x+y\right)+xyz}+\frac{1}{yz\left(y+z\right)+xyz}+\frac{1}{zx\left(z+x\right)+xyz}\)

\(=\frac{1}{xy\left(x+y+z\right)}+\frac{1}{yz\left(x+y+z\right)}+\frac{1}{zx\left(x+y+z\right)}\)

\(=\frac{z}{xyz\left(x+y+z\right)}+\frac{x}{xyz\left(x+y+z\right)}+\frac{z}{xyz\left(x+y+z\right)}\)

\(=\frac{x+y+z}{xyz\left(x+y+z\right)}=1\)

Dấu "=" xảy ra tại \(x=y=z=1\) hay \(a=b=c=1\)

14 tháng 11 2019

Nhầm dòng thứ 3 dưới lên ạ:(

\(\frac{z}{xyz\left(x+y+z\right)}+\frac{x}{xyz\left(x+y+z\right)}+\frac{y}{xyz\left(x+y+z\right)}\) mới đúng nha !