Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\frac{ab+bc+ca}{abc}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\left(ab+bc+ca\right)\left(a+b+c\right)=abc\)
\(\Leftrightarrow a^2b+ab^2+c^2a+ca^2+b^2c+bc^2+2abc=0\)
\(\Leftrightarrow\left(a^2+2ab+b^2\right)c+ab\left(a+b\right)+c^2\left(a+b\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ca+c^2\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
=> Hoặc a+b=0 hoặc b+c=0 hoặc c+a=0
=> Hoặc a=-b hoặc b=-c hoặc c=-a
Ko mất tổng quát, g/s a=-b
a) Ta có: vì a=-b thay vào ta được:
\(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=-\frac{1}{b^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{1}{c^3}\)
\(\frac{1}{a^3+b^3+c^3}=\frac{1}{-b^3+b^3+c^3}=\frac{1}{c^3}\)
=> đpcm
b) Ta có: \(a+b+c=1\Leftrightarrow-b+b+c=1\Rightarrow c=1\)
=> \(P=-\frac{1}{b^{2021}}+\frac{1}{b^{2021}}+\frac{1}{c^{2021}}=\frac{1}{1^{2021}}=1\)
\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)
\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\left(\frac{1}{a}\right)^2+\left(\frac{1}{b}\right)^2+\left(\frac{1}{c}\right)^2+2\frac{1}{ab}+2\frac{1}{bc}+2\frac{1}{ac}\)
\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ac}\)
\(\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ac}=0\\ 2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=0\)
\(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}=0\\ \frac{abc^2+a^2bc+ab^2c}{a^2b^2c^2}=0\)
\(abc^2+a^2bc+ab^2c=0\\ abc\left(c+a+b\right)=0\)
\(a+b+c=0\)(DPCM)
Ta có:\(a^2-b=b^2-c\)
\(\Leftrightarrow a^2-b^2=b-c\)
\(\Leftrightarrow\left(a-b\right)\left(a+b\right)=b-c\)
\(\Leftrightarrow a+b=\frac{b-c}{a-b}\)
\(\Leftrightarrow a+b+1=\frac{b-c}{a-b}+1\)
\(\Leftrightarrow a+b+1=\frac{a-c}{a-b}\)
Cmtt ta có:
\(\hept{\begin{cases}b^2-c=c^2-a\Leftrightarrow b+c+1=\frac{b-a}{b-c}\\c^2-a=a^2-b\Leftrightarrow c+a+1=\frac{c-b}{c-a}\end{cases}}\)
\(\Rightarrow\left(a+b+1\right)\left(b+c+1\right)\left(c+a+1\right)=\frac{a-c}{a-b}.\frac{b-c}{b-a}.\frac{c-b}{c-a}=-1\)
Cre:mạng
vì a+b+c = 2008 và 1/a + 1/b + 1/c = 1/2008 => 1/a + 1/ b + 1/c = 1/ (a+b+c)
\(\frac{bc}{abc}+\frac{ac}{abc}+\frac{ab}{abc}=\frac{1}{a+b+c}\Leftrightarrow\frac{bc+ac+ab}{abc}=\frac{1}{a+b+c}\Rightarrow\left(bc+ac+ab\right)\left(a+b+c\right)=abc\)
=>(a+b+c)(bc+ac+ab) - abc = 0
=> abc + a(ac+ab) + (b+c)(bc+ac+ab) - abc = 0
=> a2(b+c) + (b+c)(bc+ac+ab) = 0 => (b+c)(a2 + bc + ac + ab) = 0 => (b+c)[a(a+c) + b(a+c)] = 0
=> (b+c)(a+b)(a+c) = 0 => b+c = 0 hoặc a+b = 0 hoặc a+c = 0
Nếu b+c = 0 => a = 2008
nếu a+ b = 0 => c = 2008
Nếu a+c = 0 => b = 2008
Vậy....
\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{ac}+\frac{2}{bc}\)
\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}\right)=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{c+b+a}{abc}\right)\)
Mà a+b+c = 0 nên suy ra:
\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{0}{abc}\right)=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)
Ta có: (\(\frac{1}{a}\)+\(\frac{1}{b}\)+\(\frac{1}{c}\))\(^2\)= \(\frac{1}{a^2}\)+\(\frac{1}{b^2}\)+\(\frac{1}{c^2}\)+\(\frac{2}{abc}\)(\(\frac{a+b+c}{abc}\))
Mà
A+B+C= 0
nên: VT = VP (đpcm)
Ta có:
1+\(\dfrac{1}{b}=b+\dfrac{1}{c}=c+\dfrac{1}{a}\)
Thay a=1
=>\(1+\dfrac{1}{b}=b+\dfrac{1}{c}=c+1\)
*Lấy \(1+\dfrac{1}{b}=c+1\Rightarrow\dfrac{1}{b}=c\Rightarrow b=\dfrac{1}{c}\)
=>\(1+\dfrac{1}{b}=\dfrac{2}{c}=c+1\)
*Lấy \(\dfrac{2}{c}=\dfrac{c+1}{1}\)
=> 2=c(c+1)
<=> 2=c2+c
=>c=-2
*Lấy \(1+\dfrac{1}{b}=\dfrac{2}{c}\)
Thay c=-2 và quy đồng
=>\(\dfrac{b+1}{b}=-1\)
=>b+1=-b
=> b+b=-1
=>2b=-1
=> b=-1/2
Vậy b=\(-\dfrac{1}{2};c=-2\)