Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình không chắc câu này lắm nhưng thôi giải dùm bạn vậy :((
\(\frac{2a+b}{a+b}+\frac{2b+c}{b+c}+\frac{2c+d}{c+d}+\frac{2d+a}{d+a}=6\)
\(\Leftrightarrow\)\(1+\frac{a}{a+b}+1+\frac{b}{b+c}+1+\frac{c}{c+d}+1+\frac{d}{d+a}=6\)
\(\Leftrightarrow\)\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+d}+\frac{d}{d+a}=2\)
\(\Leftrightarrow\)\(1-\frac{a}{a+b}-\frac{b}{b+c}+1-\frac{c}{c+d}-\frac{d}{d+a}=0\)
\(\Leftrightarrow\)\(\frac{b}{a+b}-\frac{b}{b+c}+\frac{d}{c+d}-\frac{d}{d+a}=0\)
\(\Leftrightarrow\)\(\frac{b\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}+\frac{d\left(a-c\right)}{\left(c+d\right)\left(d+a\right)}=0\)
\(\Leftrightarrow\)\(b\left(c+d\right)\left(d+a\right)-d\left(a+b\right)\left(b+c\right)\)
\(\Leftrightarrow\)\(abc-acd+bd^2-b^2d=0\)
\(\Leftrightarrow\)\(\left(b-d\right)\left(ac-bd\right)=0\)
\(\Leftrightarrow\)\(ac-bd=0\Leftrightarrow ac=bd\left(b\ne d\right)\)
Vậy bạn tự kết luận nha
\(\Leftrightarrow1+\frac{a}{a+b}+1+\frac{b}{b+c}+1+\frac{c}{c+d}+1+\frac{d}{d+a}=6\)
\(\Leftrightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}+\frac{d}{d+a}=2\)
\(\Leftrightarrow1-\frac{a}{a+b}-\frac{b}{b+c}+1-\frac{c}{c+d}-\frac{d}{d+a}=0\)
\(\Leftrightarrow\frac{b}{a+b}-\frac{b}{b+c}+\frac{d}{c+d}-\frac{d}{d+a}=0\)
\(\Leftrightarrow\frac{b\left(b+c\right)-b\left(a+b\right)}{\left(a+b\right)\left(b+c\right)}+\frac{d\left(d+a\right)-d\left(c+d\right)}{\left(c+d\right)\left(d+a\right)}=0\)
\(\Leftrightarrow\frac{b\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}+\frac{d\left(a-c\right)}{\left(c+d\right)\left(d+a\right)}=0\)
\(\Leftrightarrow b\left(c-a\right)\left(c+d\right)\left(d+a\right)+d\left(a-c\right)\left(a+b\right)\left(b+c\right)=0\)
\(\Leftrightarrow b\left(c-a\right)\left(c+d\right)\left(d+a\right)-d\left(c-a\right)\left(a+b\right)\left(b+c\right)=0\)
\(\Leftrightarrow b\left(c+d\right)\left(d+a\right)-d\left(a+b\right)\left(b+c\right)=0\)
\(\Leftrightarrow\left(bc+bd\right)\left(d+a\right)-\left(da+db\right)\left(b+c\right)=0\)
\(\Leftrightarrow bcd+bca+bd^2+bda-abd-adc-db^2-dbc=0\)
\(\Leftrightarrow bca-acd+bd^2-b^2d=0\)
\(\Leftrightarrow ac\left(b-d\right)-bd\left(b-d\right)=0\)
\(\Leftrightarrow\left(b-d\right)\left(ac-bd\right)=0\)
\(\Leftrightarrow ac-bd=0\)
\(\Leftrightarrow ac=bd\)
\(\Leftrightarrow\left(ac\right)^2=abcd\)\(\left(đpcm\right)\)
dành cho người không hiểu bài trên
\(#huybip#\)
\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+d}+\frac{d}{d+a}=2\Leftrightarrow1-\frac{a}{a+b}-\frac{b}{b+c}+1-\frac{c}{c+d}-\frac{d}{d+a}=0\)
\(\Leftrightarrow\frac{b\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}+\frac{d\left(a-c\right)}{\left(c+d\right)\left(d+a\right)}=0\)
\(\Leftrightarrow b\left(c-a\right)\left(a+b\right)\left(b+c\right)-d\left(c-a\right)\left(c+d\right)\left(d+a\right)=0\)
\(\Leftrightarrow b\left(a+b\right)\left(b+c\right)-d\left(c+d\right)\left(d+a\right)=0\)
\(\Leftrightarrow bad+bd^2+bca+bcd-dab-dac-db^2-cbd=0\)
\(\Leftrightarrow bca-dca+bd^2-db^2=0\)
\(\Leftrightarrow\left(b-d\right)\left(ca-bd\right)=0\)
\(\Rightarrow ca=bd\Rightarrow abcd=bd^2\)
Tách ra bạn có: \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+d}+\frac{d}{d+a}=2\Leftrightarrow1-\frac{a}{a+b}-\frac{b}{b+c}+1-\frac{c}{c+d}-\frac{d}{d+a}=0\)
Quy đồng: \(\Leftrightarrow\frac{b\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}+\frac{d\left(a-c\right)}{\left(c+d\right)\left(d+a\right)}=0\)
\(\Leftrightarrow b\left(c-a\right)\left(a+b\right)\left(b+c\right)-d\left(c-a\right)\left(c+d\right)\left(d+a\right)=0\)
Do a<>c:
\(\Leftrightarrow b\left(a+b\right)\left(b+c\right)-d\left(c+d\right)\left(d+a\right)=0\)
Phá ngoặc:
\(\Leftrightarrow bad+bd^2+bca+bcd-dab-dac-db^2-cbd=0\)
\(\Leftrightarrow bca-dca+bd^2-db^2=0\)
Phân tích đa thức thành nhân tử:
\(\Leftrightarrow\left(b-d\right)\left(ca-bd\right)=0\)
Do b<>d:
\(\Rightarrow ca=bd\Rightarrow abcd=bd^2\)
Bạn đưa về như họ là đc , mk thử giúp bạn
(2a + b)/(a+b) = (a+a+b)/(a+b) = a/(a+b) + (a+b)/(a+b) = a/(a+b) + 1
Ở câu hỏi tương tự người ta đưa về dạnh này
Điều kiện đã cho có thể được viết lại thành \(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+d}+\dfrac{d}{d+a}=2\)
hay \(1-\dfrac{a}{a+b}-\dfrac{b}{b+c}+1-\dfrac{c}{c+d}-\dfrac{d}{d+a}=0\)
\(\Leftrightarrow\dfrac{b}{a+b}-\dfrac{b}{b+c}+\dfrac{d}{c+d}-\dfrac{d}{d+a}=0\)
\(\Leftrightarrow\dfrac{b^2+bc-ab-b^2}{\left(a+b\right)\left(b+c\right)}+\dfrac{d^2+da-cd-d^2}{\left(c+d\right)\left(d+a\right)}=0\)
\(\Leftrightarrow\dfrac{b\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}+\dfrac{d\left(a-c\right)}{\left(c+d\right)\left(d+a\right)}=0\)
\(\Leftrightarrow\left(c-a\right)\left[\dfrac{b}{\left(a+b\right)\left(b+c\right)}-\dfrac{d}{\left(c+d\right)\left(d+a\right)}\right]=0\)
\(\Leftrightarrow\dfrac{b}{\left(a+b\right)\left(b+c\right)}=\dfrac{d}{\left(c+d\right)\left(d+a\right)}\) (do \(c\ne a\))
\(\Leftrightarrow b\left(cd+ca+d^2+da\right)=d\left(ab+ac+b^2+bc\right)\)
\(\Leftrightarrow bcd+abc+bd^2+abd=abd+acd+b^2d+bcd\)
\(\Leftrightarrow abc+bd^2-acd-b^2d=0\)
\(\Leftrightarrow ac\left(b-d\right)-bd\left(b-d\right)=0\)
\(\Leftrightarrow\left(b-d\right)\left(ac-bd\right)=0\)
\(\Leftrightarrow ac=bd\) (do \(b\ne d\))
Do đó \(A=abcd=ac.ac=\left(ac\right)^2\), mà \(a,c\inℕ^∗\) nên A là SCP (đpcm)
Thế chú học có hơn ai không mà sao chú nói vậy đấy ngon làm đi
Tách ra bạn có: \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+d}+\frac{d}{d+a}=2\Leftrightarrow1-\frac{a}{a+b}-\frac{b}{b+c}+1-\frac{c}{c+d}-\frac{d}{d+a}=0\)
Quy đồng: \(\Leftrightarrow\frac{b\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}+\frac{d\left(a-c\right)}{\left(c+d\right)\left(d+a\right)}=0\)
\(\Leftrightarrow b\left(c-a\right)\left(a+b\right)\left(b+c\right)-d\left(c-a\right)\left(c+d\right)\left(d+a\right)=0\)
Do a<>c:
\(\Leftrightarrow b\left(a+b\right)\left(b+c\right)-d\left(c+d\right)\left(d+a\right)=0\)
Phá ngoặc:
\(\Leftrightarrow bad+bd^2+bca+bcd-dab-dac-db^2-cbd=0\)
\(\Leftrightarrow bca-dca+bd^2-db^2=0\)
Phân tích đa thức thành nhân tử:
\(\Leftrightarrow\left(b-d\right)\left(ca-bd\right)=0\)
Do b<>d:
\(\Rightarrow ca=bd\Rightarrow abcd=bd^2\)
Thỏa mãn.