Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này tui làm rùi mà.
\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}=\frac{1}{\frac{1}{a}+\frac{1}{b}}=\frac{1}{\frac{1}{b}+\frac{1}{c}}=\frac{1}{\frac{1}{c}+\frac{1}{a}}\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{b}+\frac{1}{c}=\frac{1}{c}+\frac{1}{a}\Leftrightarrow a=b=c\)
\(\Leftrightarrow M=\frac{ab+bc+ca}{a^2+b^2+c^2}=\frac{3a^2}{3a^2}=1\)
Từ \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\) suy ra \(\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ca}\)
\(\Rightarrow\frac{1}{b}+\frac{1}{a}=\frac{1}{c}+\frac{1}{b}=\frac{1}{a}+\frac{1}{c}\)
\(\Rightarrow\hept{\begin{cases}\frac{1}{a}+\frac{1}{b}=\frac{1}{b}+\frac{1}{c}\\\frac{1}{b}+\frac{1}{c}=\frac{1}{c}+\frac{1}{a}\\\frac{1}{c}+\frac{1}{a}=\frac{1}{a}+\frac{1}{b}\end{cases}}\)\(\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\Rightarrow a=b=c\)
Khi đó \(M=\frac{ab+bc+ca}{a^2+b^2+c^2}=\frac{a^2+a^2+a^2}{a^2+a^2+a^2}=1\)
Câu hỏi của Đậu Đình Kiên - Toán lớp 7 - Học toán với OnlineMath
https://olm.vn/hoi-dap/detail/221248297106.html
tham khảo nhé
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{3}{a+b}=\frac{2}{b+c}=\frac{1}{c+a}=\frac{3+2+1}{a+b+b+c+c+a}=\frac{6}{2\left(a+b+c\right)}=\frac{3}{a+b+c}\)
\(\rightarrow a+b=a+b+c\) \(\rightarrow c=0\)
\(\Rightarrow P=\frac{3a+3b+2019c}{a+b-2020c}=\frac{3\left(a+b\right)+2019\cdot0}{a+b-2020\cdot0}=\frac{3\left(a+b\right)}{a+b}=3\)
4. (3/4-81)(3^2/5-81)(3^3/6-81)....(3^6/9-81).....(3^2011/2014-81)
mà 3^6/9-81=0 => (3/4-81)(3^2/5-81)....(3^2011/2014-81)=0
Do theo đề bài: \(\frac{a}{m}=\frac{b}{n}=\frac{c}{p}=-4\)
\(\Rightarrow\left(\frac{a}{m}\right)^3=\left(\frac{b}{n}\right)^3=\left(\frac{c}{p}\right)^3=\left(-4\right)^3\)
\(\Rightarrow\frac{a^3}{m^3}=\frac{b^3}{n^3}=\frac{c^3}{p^3}=-64\)
\(\Rightarrow\frac{-a^3}{m^3}=\frac{3\cdot b^3}{\left(-3\right)\cdot n^3}=\frac{\left(-2\right)\cdot c^3}{2\cdot p^3}=64\) ( 1 )
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{-a^3}{m^3}=\frac{3\cdot b^3}{\left(-3\right)\cdot n^3}=\frac{\left(-2\right)\cdot c^3}{2\cdot p^3}=\frac{\left(-a^3\right)+3\cdot b^3+\left(-2\right)\cdot c^3}{m^3+\left(-3\right)\cdot n^3+2\cdot p^3}=\frac{-a^3+3\cdot b^3-2\cdot c^3}{m^3-3.n^3+2\cdot p^3}\) ( 2 )
Từ ( 1 ) và ( 2 ) suy ra: \(\frac{-a^3+3\cdot b^3-2\cdot c^3}{m^3-3.n^3+2\cdot p^3}=64\)