K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 12 2017

Lời giải:

Đặt \(A=a^7+3b^7-2c\)

Ta có: \(\frac{5b+2c(4+c^6)}{a+b+c}=1\)

\(\Leftrightarrow 5b+2c(4+c^6)=a+b+c\)

\(\Leftrightarrow 4b+7c+2c^7=a\)

----------------------------------------

Ta có bổ đề sau: Với mọi số tự nhiên $n$ nào đó thì \(n^7\equiv n\pmod 7\)

Chứng minh :

Thật vậy.

Với \(n\equiv 0\pmod 7\) thì \(n^7\equiv 0\equiv n\pmod 7\)

Với \(n\not\equiv 0\pmod 7\) hay \((n,7)=1\). Áp dụng định lý Fermat nhỏ ta có:

\(n^6\equiv 1\pmod 7\Rightarrow n^7\equiv n\pmod 7\)

Ta có đpcm.

--------------------

Quay trở lại bài toán:

Áp dụng bổ đề trên ta có:

\(A=a^7+3b^7-2c\equiv a+3b-2c^7\pmod 7\)

\(\Leftrightarrow A\equiv 4b+7c+2c^7+3b-2c^7\pmod 7\)

\(\Leftrightarrow A\equiv 7b+7c\equiv 0\pmod 7\)

Hay \(A\vdots 7\)

Chứng minh hoàn tất.

23 tháng 5 2021

Ta có:

sigma \(\frac{ab}{3a+4b+5c}=\) sigma \(\frac{2ab}{5\left(a+b+2c\right)+\left(a+3b\right)}\le\frac{2}{36}\left(sigma\frac{5ab}{a+b+2c}+sigma\frac{ab}{a+3b}\right)\)

Ta đi chứng minh: \(sigma\frac{ab}{a+b+2c}\le\frac{9}{4}\)

có: \(sigma\frac{ab}{a+b+2c}\le\frac{1}{4}\left(sigma\frac{ab}{c+a}+sigma\frac{ab}{b+c}\right)=\frac{1}{4}\left(a+b+c\right)=\frac{9}{4}\)

BĐT trên đúng nếu: \(sigma\frac{ab}{a+3b}\le\frac{9}{4}\)

Ta thấy: \(sigma\frac{ab}{a+3b}\le\frac{1}{16}\left(sigma\frac{ab}{a}+sigma\frac{3ab}{b}\right)=\frac{1}{16}\)( sigma \(b+sigma3a\)\(=\frac{1}{4}\left(a+b+c\right)=\frac{9}{4}\)

\(\Leftrightarrow sigma\frac{ab}{3a+4b+5c}\le\frac{1}{18}\left(5.\frac{9}{4}+\frac{9}{4}\right)=\frac{3}{4}\)(1)

MÀ: \(\frac{1}{\sqrt{ab\left(a+2c\right)\left(b+2c\right)}}=\frac{2}{2\sqrt{\left(ab+2bc\right)\left(ab+2ca\right)}}\ge\frac{2}{2\left(ab+bc+ca\right)}\)

\(=\frac{3}{3\left(ab+bc+ca\right)}\ge\frac{3}{\left(a+b+c\right)^2}=\frac{3}{9^2}=\frac{1}{27}\)(2)

Từ (1) và (2) \(\Rightarrow T\le\frac{3}{4}-\frac{1}{27}=\frac{77}{108}\)

Vậy GTLN của biểu thức T là 77/108 <=> a=b=c=3

27 tháng 10 2021

TK: Cho các số thực dương a, b, c thỏa mãn a + b+ c = 3. Chứng minh rằng: \(\sqrt{2a^2+\frac{7}{b^2}}+\sqrt{2b^2+\frac{7}{... - Hoc24

9 tháng 8 2021

Ta có: \(2a+b^2=2a\left(a+b+c\right)+b^2=b^2+2a^2+2ab+2ac\)

\(\ge4ab+2ac+a^2\)

\(\Rightarrow\frac{a}{2a+b^2}\le\frac{a}{4ab+2ac+a^2}=\frac{1}{4b+2c+a}\)

\(\le\frac{1}{49}.\frac{49}{4b+2c+a}=\frac{1}{49}.\frac{\left(4+2+1\right)^2}{4b+2c+a}\)

\(\le\frac{1}{49}\left(\frac{16}{4b}+\frac{4}{2c}+\frac{1}{a}\right)=\frac{1}{49}\left(\frac{4}{b}+\frac{2}{c}+\frac{1}{a}\right)\)

CMTT: \(\frac{b}{2b+c^2}\le\frac{1}{49}\left(\frac{4}{c}+\frac{2}{a}+\frac{1}{b}\right);\frac{c}{2c+a^2}\le\frac{1}{49}\left(\frac{4}{a}+\frac{2}{b}+\frac{1}{c}\right)\)

\(\Rightarrow\frac{a}{2a+b^2}+\frac{b}{2b+c^2}+\frac{c}{2c+a^2}\le\frac{1}{7}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)( đpcm )

15 tháng 5 2019

Cân bằng hệ số:

Giả sư: \(2a^2+ab+2b^2=x\left(a+b\right)^2+y\left(a-b\right)^2\) (ta đi tìm x ; y)

\(=xa^2+x.2ab+xb^2+ya^2-y.2ab+yb^2\)

\(=\left(x+y\right)a^2+2\left(x-y\right)ab+\left(x+y\right)b^2\)

Đồng nhất hệ số ta được: \(\hept{\begin{cases}x+y=2\\2\left(x-y\right)=1\end{cases}\Leftrightarrow}\hept{\begin{cases}2x+2y=4\\2x-2y=1\end{cases}}\Leftrightarrow4x=5\Leftrightarrow x=\frac{5}{4}\Leftrightarrow y=\frac{3}{4}\)

Do vậy: \(2a^2+ab+2b^2=\frac{5}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2\ge\frac{5}{4}\left(a+b\right)^2\)

Tương tự với hai BĐT còn lại,thay vào,thu gọn và đặt thừa số chung,ta được:

\(VT\ge\sqrt{\frac{5}{4}}.2.\left(a+b+c\right)=\sqrt{\frac{5}{4}}.2.3=3\sqrt{5}\) (đpcm)

Dấu "=" xảy ra khi a = b =c = 1

14 tháng 5 2019

Hoa 

cả

mắt

Đặt P=a2+b2+c2+ab+bc+ca

P=12(a+b+c)2+12(a2+b2+c2)

P≥12(a+b+c)2+16(a+b+c)2=6

Dấu "=" xảy ra khi 

23 tháng 6 2021

Ta có: \(\frac{a^2b^2+7}{\left(a+b\right)^2}=\frac{a^2b^2+1+6}{\left(a+b\right)^2}\ge\frac{2ab+2\left(a^2+b^2+c^2\right)}{\left(a+b\right)^2}\)( cô-si )

\(=\frac{\left(a+b\right)^2+a^2+b^2+2c^2}{\left(a+b\right)^2}=1+\frac{a^2+b^2+2c^2}{\left(a+b\right)^2}\)\(\ge1+\frac{a^2+b^2+2c^2}{2\left(a^2+b^2\right)}=1+\frac{1}{2}+\frac{c^2}{a^2+b^2}=\frac{3}{2}+\frac{c^2}{a^2+b^2}\)

CMTT \(\Rightarrow\)\(VT\ge\frac{9}{2}+\frac{a^2}{b^2+c^2}+\frac{b^2}{a^2+c^2}+\frac{c^2}{a^2+b^2}\)

\(P=\frac{a^2}{b^2+c^2}+\frac{b^2}{a^2+c^2}+\frac{c^2}{a^2+b^2}\)

Đặt \(\hept{\begin{cases}b^2+c^2=x>0\\a^2+c^2=y>0\\a^2+b^2=z>0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a^2=\frac{y+z-x}{2}\\b^2=\frac{z+x-y}{2}\\c^2=\frac{x+y-z}{2}\end{cases}}\)

\(\Rightarrow P=\frac{y+z-x}{2x}+\frac{z+x-y}{2y}+\frac{x+y-z}{2z}\)

\(=\frac{y}{2x}+\frac{z}{2x}-\frac{1}{2}+\frac{z}{2y}+\frac{x}{2y}-\frac{1}{2}+\frac{x}{2z}+\frac{y}{2z}-\frac{1}{2}\)

\(=\left(\frac{y}{2x}+\frac{x}{2y}\right)+\left(\frac{z}{2x}+\frac{x}{2z}\right)+\left(\frac{z}{2y}+\frac{y}{2z}\right)-\frac{3}{2}\)

\(\ge1+1+1-\frac{3}{2}=\frac{3}{2}\)( bđt cô si )

\(\Rightarrow VT\ge\frac{9}{2}+\frac{3}{2}=6\) ( đpcm)

Dấu "=" xảy ra <=> a=b=c=1

 

NV
28 tháng 6 2021

Đề bài sai với \(a=b=c=2\)

28 tháng 6 2021

Có xóa luôn câu hỏi không ạ?