Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{a}{a+b+c-c}+\dfrac{b}{a+b+c-a}+\dfrac{c}{a+b+c-b}\\ A=\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}\\ \Rightarrow A>\dfrac{a}{a+b+c}+\dfrac{b}{a+b+c}+\dfrac{c}{a+b+c}=1\left(1\right)\\ A< \dfrac{a+c}{a+b+c}+\dfrac{b+a}{a+b+c}+\dfrac{c+b}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\left(2\right)\\ \left(1\right)\left(2\right)\Rightarrow1< A< B\\ \Rightarrow A\notin Z\)
Ta có :
Thay \(a+b+c=2016\) vào A ta có :
\(A=\frac{a}{2016-c}+\frac{b}{2016-a}+\frac{c}{2016-b}\)
\(A=\frac{a}{a+b+c-c}+\frac{b}{a+b+c-a}+\frac{c}{a+b+c-b}\)
\(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)
\(\Rightarrow\)\(A>1\)\(\left(1\right)\)
Lại có :
\(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+b}{a+b+c}+\frac{b+c}{a+b+c}+\frac{c+a}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
\(\Rightarrow\)\(A< 2\)\(\left(2\right)\)
Từ (1) và (2) suy ra : \(1< A< 2\)
Vậy A không phải là số nguyên
Chúc bạn học tốt ~
Ta có:
\(A=\frac{a}{2016-c}+\frac{b}{2016-a}+\frac{c}{2016-b}\)
\(A=\frac{a}{a+b+c-c}+\frac{b}{a+b+c-a}+\frac{c}{a+b+c-b}\)
\(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}\)
tự làm tiếp nhé!
Ta có: \(A=\dfrac{a}{2016-c}+\dfrac{b}{2016-a}+\dfrac{c}{2016-b}\)
\(=\dfrac{a}{a+b+c-c}+\dfrac{b}{a+b+c-a}+\dfrac{c}{a+b+c-b}\)
\(=\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{a+c}\)
Lại có: \(\dfrac{a}{a+b}>\dfrac{a}{a+b+c};\dfrac{b}{b+c}>\dfrac{b}{a+b+c};\dfrac{c}{c+a}>\dfrac{c}{a+b+c}\)
\(\Rightarrow A=\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{a+c}>\dfrac{a+b+c}{a+b+c}=1\left(1\right)\)
Và \(\dfrac{a}{a+b}< \dfrac{a+b}{a+b+c};\dfrac{b}{b+c}< \dfrac{b+c}{a+b+c};\dfrac{c}{c+a}< \dfrac{c+a}{a+b+c}\)
\(\Rightarrow A=\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{a+c}< \dfrac{2\left(a+b+c\right)}{a+b+c}=2\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\Rightarrow1< A< 2\) không phải số nguyên
bạn tham khảo tại link này nhé~
Câu hỏi của họk toán vs đamê
=> 2016+2017 = a+3c+a+2b
=> 2a+2b+2c = 4033
=> 2a+2b+2c = 4033 - c
=> 2.(a+b+c) = 4033 - c < = 4033 - 0 = 4033 ( vì c >= 0 )
=> a+b+c < = 4033/2
Dấu "=" xảy ra <=> c=0 ; a+3c = 2016 ; a+2b = 2017 <=> a=672 ; b=1345/2 ; c=0
Vậy ............
Tk mk nha
Ta có: a + 3c = 2016 ; a + 2b = 2017
Do đó : 2a + 2b + 3c = 2a + 2b + 2c + c = 2 (a + b + c) + c = 4033
Suy ra: 2 (a + b + c) = 4033 - c
Để 2 (a + b + c) lớn nhất thì 4033 - c lớn nhất
Nên c nhỏ nhất , mà c >= 0 nên c = 0.
Từ đó ta suy ra : 2 (a + b + c) <= 4033 <=> a + b + c <= 2016,5
Vậy Max P = 2016,5
Khi c = 0 ; a = 2016 ; b = 0,5
Ta có: a + 3c = 2016 ; a + 2b = 2017
Do đó : 2a + 2b + 3c = 2a + 2b + 2c + c = 2 (a + b + c) + c = 4033
Suy ra: 2 (a + b + c) = 4033 - c
Để 2 (a + b + c) lớn nhất thì 4033 - c lớn nhất
Nên c nhỏ nhất , mà c >= 0 nên c = 0.
Từ đó ta suy ra : 2 (a + b + c) <= 4033 <=> a + b + c <= 2016,5
Vậy Max P = 2016,5
Khi c = 0 ; a = 2016 ; b = 0,5
b, Có: a/b < c/d => ad < bc
Xét a.(b+d)-b.(a+c) = ab+ad-ba-bc = ad-bc < 0
=> a.(b+d) < b.(a+c)
=> a/b < a+c/b+d
c, Đề phải là cho a+b+c = 2016 chứ bạn
Có : A = a/a+b+c-c + b/a+b+c-a + c/a+b+c-b = a/a+b + b/b+c + c/c+a
Vì a,b,c thuộc Z+ nên a/a+b > 0 ; b/b+c > 0 ; c/c+a > 0
=> A > a/a+b+c + b/a+b+c + c/a+b+c = 1
Lại có : a < a+b ; b < b+c ; c < c+a => 0 < a/a+b < a ; 0 < b/b+c < 1 ; 0 < c/c+a < 1
=> A < a+c/a+b+c + b+a/a+b+c + c+b/a+b+c = 2
=> 1 < A < 2
=> A ko phải là số tự nhiên
Tk mk nha
a,ÁP DỤNG TÍNH CHẤT DÃY TỈ SỐ BẰNG NHAU.
TA CÓ:\(\frac{a}{b}\)=\(\frac{b}{c}\)=\(\frac{c}{d}\)=\(\frac{d}{e}\)=>\(\frac{2a^2}{2b^2}\)=\(\frac{3b^2}{3c^2}\)=\(\frac{4c^2}{4d^2}\)=\(\frac{5d^2}{5e^2}\)=\(\frac{2a^2+3b^2+4c^2+5d^2}{2b^2+3c^2+4d^2+5e^2}\)(đfcm)