Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trước hết ta có thể giả sử q=2
* Nếu n là số nguyên dương lẻ thì ta có:
\(p^n+2^n=\left(p+2\right)\left(\frac{p^n+2^n}{p+2}\right)=r^2\) mà do r là số nguyên tố nên ta phải có:
\(p+2=\frac{p^n+2^n}{p+2}=r\)
Nếu n là số lẻ và \(n\ge3\) thì ta có: \(\frac{p^n+2^n}{p+2}>p+2\) từ đây ta dẫn đến một điều vô lý. Do đó, ta phải có: n=1.
* Nếu n là số chẵn, đặt n=2k , \(k\in Z^+\) thì từ đây ta có: \(\left(p^k\right)^2+\left(2^k\right)^2=r^2\) mà dễ thấy p , r phải phân biệt nên đây là bộ ba Phythagore nên tồn tại x,y:(x,y) = 1 và x,y khác tính chẵn lẻ thỏa mãn:
\(\hept{\begin{cases}p^k=2xy\\2^k=x^2-y^2\end{cases}}\) hoặc \(\hept{\begin{cases}2^k=2xy\\p^k=x^2-y^2\end{cases}}\)
Mà p là số nguyên tố nên trường hợp này không xảy ra.
Vậy ta phải có: n=1
Chúc bạn học tốt !!!
Phương trình có 2 nghiêm nguyên dương m, n. Khi đó mn=q, m+n=p, do q là số nguyên tố nên chỉ có 2 ước nguyên dương là 1, q. Do đó {m, n}={1; q}
Khi đó 1+q=p, do đó p, q khác tính chẵn lẻ, mà chỉ có 2 là số nguyên tố chẵn, do đó q=2, p=3
p²+q²=2²+3²=13 là số nguyên tố ( đọc)
Câu hỏi của Nguyễn Phương Thảo - Toán lớp 7 - Học toán với OnlineMath
=> \(n+2=p^2\) là số chính phương.
ta có p^2=(m+n)(m-1)
vì m+n>m-1
>0
m
+n=p^2
m-1=1
suy ra m=2=>n+2=p^2 là số chính phuopwng
Ta có p^2-p=q^2-3q+2 <=> p(p-1)=(q-1)(q-2) (*)
Từ (*) suy ra p|(q-1)(q-2). Do p là snt nên p|(q-1) hoặc p|(q-2)
+) Xét p|(q-1). Đặt q=kp+1 (k E N*) thay vào (*):
kp(kp-1)=p(p-1) <=>k(kp-1)=p-1 <=> pk^2 -k-p+1=0.<=>(p-1)[p(k+1)-1]=0
=>k=1 (Do p(k+1)-1>0).
Lúc này q=p+1>=3. Do vậy p=2. q=3 (Do p;q nguyên tố) suy ra p^2+q^2=13 là snt
Xét p|(q-2) đặt q=tp+2 (t E N*) . Thay vào (*) biến đổi tương tự ta được . (t+1)[p(k-1)+1]=0 (vô lý nên loại)
Vậy đpcm
p2 - q2 = p - 3q + 2
4p2 - 4q2 = 4p - 12q + 8
4p2 - 4p + 1 = 4q2 - 12q + 9
(2p - 1)2 = (2q - 3)2
Mà 2p - 1 >0(p nguyên tố);2q - 3 >0(q nguyên tố)
Do đó 2p - 1 = 2q - 3 <=> p + 1 = q
Ta có q > 3 (vì p > 2) nên q lẻ, do đó p chẵn
=> p = 2. Nên q = p + 1 = 3
Vậy p2 + q2 = 22 + 32 = 4 + 9 = 13 là số nguyên tố