K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2017

Ko mất tính tổng quát giả sử \(a\ge b\ge c\),

Let \(f\left(x\right)=x^2\) là hàm lồi trên \(\left(0;2\right)\) và \(\left(2,1,0\right)›\left(a,b,c\right)\)

Áp dụng Bđt Karamata ta có:

\(5=2^2+1^2+0^2\ge a^2+b^2+c^2\)

Hay ta có ĐPCM

15 tháng 7 2019

\(a^2\left(b+c\right)+b^2\left(c+a\right)+c^2\left(a+b\right)+2abc=0\)

=>\(\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)

=>a=-b hoặc a=-c hoặc b=-c (1)

=>a=1 hoăc b=1 hoặc c=1 (2)

từ 1 và 2 => Q=1

22 tháng 5 2021

có vấn đề

22 tháng 5 2021

anhtoan

bài này có người giải rồi

3 tháng 8 2017

Ta có:

\(\frac{x}{a}+\frac{y}{b}=\frac{x+y}{c}\)

\(\Leftrightarrow\frac{x}{a}+\frac{y}{b}=\frac{x+y}{-a-b}\)

\(\Leftrightarrow x\left(b^2+2ab\right)+y\left(a^2+2ab\right)=0\left(1\right)\)\

Ta cần chứng minh:

\(xa^2+yb^2=\left(x+y\right)c^2\)

\(\Leftrightarrow xa^2+yb^2=\left(x+y\right)\left(a+b\right)^2\)

\(\Leftrightarrow x\left(b^2+2ab\right)+y\left(a^2+2ab\right)=0\left(2\right)\)

Từ (1) và (2) ta có ĐPCM

26 tháng 6 2018

Ta có\(ab+bc+ca=\frac{\left(a+b+c\right)^2-\left(a^2+b^2+c^2\right)}{2}=1\) 

Thay 1=ab+bc+ca vào, ta có 

\(a\sqrt{\frac{\left(1+b^2\right)\left(1+c^2\right)}{1+a^2}}=a\sqrt{\frac{\left(a+b\right)\left(b+c\right)\left(a+c\right)\left(c+b\right)}{\left(a+b\right)\left(a+c\right)}}=a\left(b+c\right)\)

Tương tự rồi cộng lại, ta có 

A=2(ab+bc+ca)=2

^_^