K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2019

\(VT=x\sqrt{y}+\frac{1}{2}y\sqrt{4\left(2x+2y\right)}\le\frac{x\left(y+1\right)}{2}+\frac{1}{2}y\left(\frac{4+2x+2y}{2}\right)\)

\(=\frac{2xy+2x}{4}+\frac{4y+2xy+2y^2}{4}=\frac{2\left(x+2y\right)+4xy+2y^2}{4}\)

\(=\frac{2\left(x+2y\right)+\frac{2}{3}.3y\left(2x+y\right)}{4}\le\frac{2\left(x+2y\right)+\frac{2}{3}\left(\frac{2\left(x+2y\right)}{2}\right)^2}{4}\le3\) (*)

Đẳng thức xảy ra khi x= y = 1.

Is that true? Bài  này khó nhằn đấy, Đối với mình việc nhìn ra chỗ  (*) ko dễ chút nào, chả biết có tính sai gì ko nữa..

NV
14 tháng 4 2022

Với mọi a;b;c không âm ta có:

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)

\(\Leftrightarrow3a^2+3b^2+3c^2\ge a^2+b^2+c^2+2ab+2bc+2ca\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)

\(\Leftrightarrow a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}\)

Áp dụng:

a.

\(VT\le\sqrt{3\left(x+7+y+7+z+7\right)}=\sqrt{3\left(6+21\right)}=9\)

Dấu "=" xảy ra khi \(x=y=z=2\)

b.

\(VT\le\sqrt{3\left(3x+2y+3y+2z+3z+2x\right)}=\sqrt{15\left(x+y+z\right)}=\sqrt{15.6}=3\sqrt{10}\)

Dấu "=" xảy ra khi \(x=y=z=2\)

c.

\(VT\le\sqrt{3\left(2x+5+2y+5+2z+5\right)}=\sqrt{3\left(2.6+15\right)}=9\)

Dấu "=" xảy ra khi \(x=y=z=2\)

25 tháng 3 2020

\(\left(2x+\frac{1}{x}\right)^2+\left(2y+\frac{1}{y}\right)^2\)

\(\ge\frac{\left(2x+2y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)

\(\ge\frac{\left[2\left(x+y\right)+\frac{4}{x+y}\right]^2}{2}\)

\(=8\)

Dấu "=" xảy  ra tại x=y=1/2

25 tháng 3 2020

Có vẻ kết quả  bị sai Huy ơi.

Diệp thay kết quả cuối cùng 8 ------------> 18 nhé!

26 tháng 11 2018

Sửa lại đề : \(\frac{2x^2+3xy+y^2}{2x^3+x^2y-2xy^2-y^3}\)

Ta có : \(\frac{2x^2+3xy+y^2}{2x^3+x^2y-2xy^2-y^3}\)   \(=\) \(\frac{2x^2+3xy+y^2}{\left(x-y\right)\left(2x^2+3xy+y^2\right)}\)

                                                          \(=\frac{1}{x-y}\)      ( Chia cả tử và mẫu cho \(2x^2+3xy+y^2\))

                

                                                        

7 tháng 5 2016

Áp dụng bất đẳng thức  \(AM-GM\)  cho bộ ba số thực không âm gồm có \(x;\)  \(x;\)  \(2y\), khi đó, ta có:

\(x+x+2y\ge3\sqrt[3]{2x^2y}\)

\(\Leftrightarrow\)   \(2\left(x+y\right)\ge3\sqrt[3]{2x^2y}\)

\(\Leftrightarrow\)  \(6\ge3\sqrt[3]{2x^2y}\)

\(\Leftrightarrow\)  \(2\ge\sqrt[3]{2x^2y}\)  \(\Leftrightarrow\)  \(2^3\ge2x^2y\)  \(\Leftrightarrow\)  \(8\ge2x^2y\)  \(\Leftrightarrow\)  \(x^2y\le\frac{8}{2}=4\)

Dấu   \("="\)  xảy ra  \(\Leftrightarrow\)  \(^{x=2y}_{x+y=3}\)  \(\Leftrightarrow\)  \(^{x=2}_{y=1}\)

7 tháng 5 2016

bất đẳng thức này mình chưa học ạ. Đây là đề thi lớp 8. Nếu bạn có cách giải khác thì giải dùm mình. Tks 

15 tháng 5 2020

Bài 3 thì \(\le1\)

Bài 4 thì \(\ge\frac{3}{4}\) nhé

NV
8 tháng 1 2023

Từ giả thiết:

\(29\le y^2+2xy+4x\le y^2+2xy+x^2+4\)

\(\Rightarrow\left(x+y\right)^2\ge25\Rightarrow x+y\ge5\)

Đặt \(P=2x+3y+\dfrac{4}{x}+\dfrac{18}{y}\)

\(\Rightarrow P=x+y+\left(x+\dfrac{4}{x}\right)+2\left(y+\dfrac{9}{y}\right)\ge5+2\sqrt{\dfrac{4x}{x}}+2.2\sqrt{\dfrac{9y}{y}}=21\)

Dấu "=" xảy ra khi \(\left(x;y\right)=\left(2;3\right)\)

14 tháng 12 2015

ai tick cho thêm 20 cái tròn 200 điểm lun