K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2023

\(P=\dfrac{9}{ab+bc+ca}+\dfrac{2}{a^2+b^2+c^2}\)

\(=2\left[\dfrac{1}{a^2+b^2+c^2}+\dfrac{4}{2\left(ab+bc+ca\right)}\right]+\dfrac{5}{ab+bc+ca}\)

\(\ge2.\dfrac{\left(1+2\right)^2}{\left(a+b+c\right)^2}+\dfrac{5}{ab+bc+ca}\)

\(=\dfrac{18}{1}+\dfrac{5}{ab+bc+ca}\ge18+5.\dfrac{3}{\left(a+b+c\right)^2}=18+15=33\)

Đẳng thức xảy ra khi a=b=c=1/3.

Vậy GTNN của P là 33.

AH
Akai Haruma
Giáo viên
5 tháng 2

Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\(P=2(\frac{1}{ab+bc+ac}+\frac{1}{ab+bc+ac}+\frac{1}{a^2+b^2+c^2})+\frac{1}{2(ab+bc+ac)}\\ \geq 2.\frac{9}{2(ab+bc+ac)+a^2+b^2+c^2}+\frac{1}{2(ab+bc+ac)}\\ =\frac{18}{(a+b+c)^2}+\frac{1}{2(ab+bc+ac)}\\ =18+\frac{1}{2(ab+bc+ac)}\)

Áp dụng BĐT AM-GM:

$2(ab+bc+ac)\leq 2.\frac{(a+b+c)^2}{3}=\frac{2}{3}$

$\Rightarrow \frac{1}{2(ab+bc+ac)}\geq \frac{3}{2}$

$\Rightarrow P\geq 18+\frac{3}{2}=\frac{39}{2}$
Vậậy $P_{\min}=\frac{39}{2}$ khi $a=b=c=\frac{1}{3}$

1 tháng 1

áp dụng bất đẳng thức phụ \(\dfrac{1}{a}+\dfrac{1}{b}\)\(\dfrac{4}{a+b}\)<=>(a-b)2≥0 (luôn đúng)
Ta có P≥\(\dfrac{\left(3+\sqrt{2}\right)^2}{\left(a+b+c\right)^2}\)=(3+\(\sqrt{2}\))2
Dấu = xảy ra <=> a=b=c=1/3

4 tháng 5 2018

Ta có: 2P=(a2+b2) + (b2+c2) + (c2+a2

Theo Cauchy có: 

\(2P\ge2ab+2bc+2ca=2\left(ab+bc+ca\right)=2.9\)

=> \(P\ge9\)=> Pmin = 9 đạt được khi x=y=\(\sqrt{3}\)

Hoặc:

P2= (a2+b2+c2)(b2+c2+a2

Theo Bunhiacopxki có:

P2= (a2+b2+c2)(b2+c2+a2\(\ge\)(ab+bc+ca)2=92

=> P\(\ge\)9  => Pmin=9

5 tháng 5 2018

Vì \(a\ge1,b\ge1,c\ge1\)(gt) => \(\left(a-1\right)\left(b-1\right)\ge0\)<=> ab -a -b + 1 \(\ge0\)(1)

\(\left(b-1\right)\left(c-1\right)\ge0\)<=> bc - b - c + 1 \(\ge0\)(2)

\(\left(c-1\right)\left(a-1\right)\ge0\)<=> ca -c - a + 1 \(\ge0\)(3)

Cộng từng vế của (1), (2) và (3) ta được: 

ab + bc + ca -2(a +b +c) + 3 \(\ge0\)

=> \(a+b+c\le\frac{ab+bc+ca+3}{2}=\frac{9+3}{2}=6\)

Mà \(a\ge1,b\ge1,c\ge1\Rightarrow a+b+c\ge3\)=> \(3\le a+b+c\le6\)=> \(\left(a+b+c\right)^2\le36\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)\le36\)

=> \(a^2+b^2+c^2\le36-2\left(ab+bc+ca\right)=36-2\times9=18\)=> P \(\le18\)

Vậy GTLN của P là 18 

Dâu "=" xảy ra khivà chỉ khi:

a =b=1, c=4 

hoặc: b=c=1, a=4

hoặc: c=a=1, b=4

21 tháng 9 2019

Áp dụng bất đẳng thức Cauchy cho 2 số dương ta có:

a 2 + b 2 ≥ 2 a b ,   b 2 + c 2 ≥ 2 b c ,   c 2 + a 2 ≥ 2 c a  

Do đó:  2 a 2 + b 2 + c 2 ≥ 2 ( a b + b c + c a ) = 2.9 = 18 ⇒ 2 P ≥ 18 ⇒ P ≥ 9

Dấu bằng xảy ra khi  a = b = c = 3 . Vậy MinP= 9 khi  a = b = c = 3

Vì  a ,   b ,   c   ≥ 1 , nên  ( a − 1 ) ( b − 1 ) ≥ 0 ⇔ a b − a − b + 1 ≥ 0 ⇔ a b + 1 ≥ a + b

Tương tự ta có  b c + 1 ≥ b + c ,   c a + 1 ≥ c + a  

Do đó  a b + b c + c a + 3 ≥ 2 ( a + b + c ) ⇔ a + b + c ≤ 9 + 3 2 = 6

Mà   P = a 2 + b 2 + c 2 = a + b + c 2 − 2 a b + b c + c a = a + b + c 2 – 18

⇒ P ≤ 36 − 18 = 18 . Dấu bằng xảy ra khi :  a = 4 ; b = c = 1 b = 4 ; a = c = 1 c = 4 ; a = b = 1

Vậy maxP= 18 khi :  a = 4 ; b = c = 1 b = 4 ; a = c = 1 c = 4 ; a = b = 1

AH
Akai Haruma
Giáo viên
13 tháng 5 2021

Lời giải:

Áp dụng BĐT Cô-si:

$a^2+4\geq 2\sqrt{4a^2}=|4a|\geq 4a$

$b^2+4\geq |4b|\geq 4b$

$2(a^2+b^2)\geq 4|ab|\geq 4ab$

Cộng theo vế và thu gọn:

$3(a^2+b^2)+8\geq 4(a+b+ab)=32$

$\Rightarrow a^2+b^2\geq 8$

Vậy $a^2+b^2$ min bằng $8$. Giá trị này đạt tại $a=b=2$

13 tháng 5 2021

Áp dụng BĐT cosi:
`a^2+4>=4a`
`b^2+4>=4b`
`=>a^2+b^2+8>=4(a+b)(1)`
Áp dụng cosi:
`a^2+b^2>=2ab`
`=>2(a^2+b^2)>=4ab(2)`
Cộng từng vế (1)(2) ta có:
`3(a^2+b^2)+8>=4(a+b+ab)=32`
`<=>3(a^2+b^2)>=24`
`<=>(a^2+b^2)>=8`
Dấu "=" `<=>a=b=2`

23 tháng 3 2023

Mình cần lời giải chi tiết ạ.

27 tháng 12 2019

Áp dụng BĐT Svac - xơ:

\(T=\frac{a}{a^2+8bc}+\frac{b}{b^2+8ca}+\frac{c}{c^2+8ab}\)

\(=\frac{a^2}{a^3+8abc}+\frac{b^2}{b^3+8abc}+\frac{c^2}{c^3+8abc}\)\(\ge\frac{\left(a+b+c\right)^2}{a^3+b^3+c^3+24abc}\)

Ta lại có: \(\left(a+b+c\right)^3=a^3+b^3+c^3+\)\(3\left(a+b+c\right)\left(ab+bc+ca\right)-3abc\)

\(\ge a^3+b^3+c^3+27\sqrt[3]{abc}.\sqrt[3]{\left(abc\right)^2}-3abc=\)\(a^3+b^3+c^3+24abc\)

Lúc đó: \(T\ge\frac{1}{a+b+c}=1\)

(Dấu "="\(\Leftrightarrow a=b=c=\frac{1}{3}\))

27 tháng 12 2019

Cho tớ sửa đề 

tử của ba cái là mũ 2 lên hết nha