Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
#)Giải :
Đặt \(A=a^2+b^2+c^2\)
Do tích a.b chẵn nên ta xét các trường hợp :
TH1 : Trong a và b có 1 số chẵn và 1 số lẻ
Giả sử a là số chẵn, còn b là số lẻ 2
=> a2 chia hết cho 4; b2 chia 4 dư 1 => a2 + b2 chia 4 dư 1
=> a2 + b2 = 4m + 1 (m thuộc N)
Chon c = 2m => a2 + b2 + c2 = 4m2 + 4m + 1 = (2m + 1)2 (thỏa mãn) (1)
TH2 : Cả a,b cùng chẵn
=> a2 + b2 chia hết cho 4 => a2 + b2 = 4n (n thuộc N)
Chọn c = n - 1 => a2 + b2 + c2 = n2 + 2n + 1 = (n + 1)2 (thỏa mãn) (2)
Từ (1) và (2) => Luôn tìm được số nguyên c thỏa mãn đề bài
Do a, b là số chẵn nên ta xét 2 trường hợp:
TH1: a chẵn, b lẻ => a2 + b2 = 4m + 1, khi đó chọn c có dạng 2m ta luôn có a2 + b2 + c2 = 4m2 + 4m + 1 = (2m + 1)2 (ĐPCM)
TH2 : a, b chẵn => a2 + b2 = 4n, khi đó chọn c có dạng n-1 ta luôn có a2 + b2 + c2 = n2 + 2n + 1 = (n+1)2 (ĐPCM)
chồi e mới lớp 6
e mà làm đc bài này chắc e đã là thần đồng đất việt rùi
\(a\left(1+a+a^2+a^3+a^4+a^5\right)\text{ là số chính phương mà:}\left(a,1+a+a^2+a^3+a^4+a^5\right)=1\text{ nên: a là số chính phương;}1+a+a^2+a^3+a^4+a^5\text{ là số chính phương}.\text{ Do đó: }\left(a+1\right)\left(a^4+a^2+1\right)\text{ cũng là số chính phương.}Gọi:d=\left(a+1,a^4+a^2+1\right)\Rightarrow a^4-a^4+1+a^2-a^2+1+1\text{ chia hết cho d nên: }d=1\text{ hoặc 3}.Nếu\text{ }d=1\text{ thì: }a\text{ và: }a+1\text{ đều là số chính phương nên: }a=0;\text{nếu: }a+1\text{ chia 3 dư 0 thì a chia 3 dư 2(vô lí) vì scp ko chia 3 dư 2}11\)
Nếu: a=0 thì hiển nhiên đúng. Tương tự với b=0
Nếu a;b>=1 thì Gọi d=UCLN(a,b)
a=da'; b=db' với (a',b')=1.
ta có: d(a'^2.d+b'^2.d-a') chia hết cho 2d^2.a'.b'
nên: d(a'^2+b'^2)-a' chia hết cho d
do đó: a' chia hết cho d
nên d=1 từ đó ta có:
\(a^2+b^2-a⋮a\text{ nên: }b^2⋮a\left(\text{mà: }\left(a,b\right)=1\right)\text{ nên: }a=1\)
Vậy: a là số chính phương
Tại sao lại suy ra được \(d\left(a'^2+b'^2\right)⋮d\)thế ?