K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2019

Chọn A.

Giả sử . Vậy .

3 tháng 1 2018

Giải bài 8 trang 27 sgk Hình học 10 | Để học tốt Toán 10

Mọi người ơi giải giúp mình nha .Mình cảm ơn mọi người nhiều 1/Cho giao điểm của parabol (P) y=-3x^2+x+3 và đường thẳng (d ) y=3x-2 có tọa độ là: A/(1;1)và ( -5/3; -7) B/(1;1)và ( -5/3; 7) C/(-1;1)và ( -5/3; 7) D/ (1;1)và ( 5/3 ; 7) 2/Phương trình x^2 +4x +4m -8 =0 có hai nghiệm trái dấu khi: A/m <bằng 2 B/m > 2 C/ m < 2 D/ m <3 3/ Cho 2 điểm M ( 8; -1) và N ( 3; 2).Nếu P là điểm đối xứng với điểm M qua N thì P có tọa độ...
Đọc tiếp

Mọi người ơi giải giúp mình nha .Mình cảm ơn mọi người nhiều

1/Cho giao điểm của parabol (P) y=-3x^2+x+3 và đường thẳng (d ) y=3x-2 có tọa độ là:

A/(1;1)và ( -5/3; -7)

B/(1;1)và ( -5/3; 7)

C/(-1;1)và ( -5/3; 7)

D/ (1;1)và ( 5/3 ; 7)

2/Phương trình x^2 +4x +4m -8 =0 có hai nghiệm trái dấu khi:

A/m <bằng 2

B/m > 2

C/ m < 2

D/ m <3

3/ Cho 2 điểm M ( 8; -1) và N ( 3; 2).Nếu P là điểm đối xứng với điểm M qua N thì P có tọa độ là:

A/P (11 ;-1)

B/ P (-2 ; 5)

C/P (13; -3)

D/ P (11/2 ;1/2 )

4/ Cho K (1;-3).Điểm A thuộc Ox ,B thuộc Oy sao cho trung điểm KB .Tọa đô điểm B là:

A/(1/3 ;0)

B/(0 ;2)

C/(0 ;3)

D/(4 ;2)

5/ cho vectơ a =(2;1) vectơ b=(3;0) vectơ c=(1;2).Phân thích vectơ c theo vectơ a và vectơ b ta đc kết quả:

A/ c=2a+b

B/ c=2a-b

C/ a=a-2b

D/ c= a+2b

6/ Phương trình x^2 -4x+m=0 có hai nghiệm phân biết khi

A/ m<bằng 4

B/ m> 4

C/ m < 4

D/ m>bằng 4

7/cho vectơ a =(2;-3) b=(2m;2n+1).Tìm m và n để vectơ a = vectơ b?

A/m=1 ;n=-2

B/m=-2 ;n=1

C/m=3 ;n=-5

D/m=0 ;n=-2

1
20 tháng 12 2017

Chào bạn . bạn tham khảo đáp án này nhé

1.A

2.C

3.B

5.B

6.C

7.A

Riêng câu 4 mk chưa hiểu ý bạn nên bạn xem lại câu hỏi rồi viết lại đề nhé

Thanks

20 tháng 6 2019

Đáp án A

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Ta có:  \(\overrightarrow {AB}  = (3 - 1;4 - 2) = (2;2)\) và \(\overrightarrow {CD}  = (6 - ( - 1);5 - ( - 2)) = (7;7)\)

b) Dễ thấy: \((2;2) = \frac{2}{7}.(7;7)\)\( \Rightarrow \overrightarrow {AB}  = \frac{2}{7}.\overrightarrow {CD} \)

Vậy hai vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {CD} \) cùng phương.

c) Ta có: \(\overrightarrow {AC}  = ( - 1 - 1; - 2 - 2) = ( - 2; - 4)\) và \(\overrightarrow {BE}  = (a - 3;1 - 4) = (a - 3; - 3)\)

Để \(\overrightarrow {AC} \) và \(\overrightarrow {BE} \) cùng phương thì \(\frac{{a - 3}}{{ - 2}} = \frac{{ - 3}}{{ - 4}}\)\( \Leftrightarrow a - 3 =  - \frac{3}{2}\)\( \Leftrightarrow a = \frac{3}{2}\)

Vậy \(a = \frac{3}{2}\) hay \(E\left( {\frac{3}{2};1} \right)\) thì hai vectơ \(\overrightarrow {AC} \) và \(\overrightarrow {BE} \) cùng phương

d)

Cách 1:

Ta có: \(\overrightarrow {BE}  = \left( {\frac{3}{2} - 3; - 3} \right) = \left( { - \frac{3}{2}; - 3} \right)\) ; \(\overrightarrow {AC}  = ( - 2; - 4)\)

\( \Rightarrow \overrightarrow {BE}  = \frac{3}{4}.\overrightarrow {AC} \)

Mà \(\overrightarrow {AE}  = \overrightarrow {AB}  + \overrightarrow {BE} \) (quy tắc cộng)

\( \Rightarrow \overrightarrow {AE}  = \overrightarrow {AB}  + \frac{3}{4}.\overrightarrow {AC} \)

Cách 2:

Giả sử \(\overrightarrow {AE}  = m\,.\,\overrightarrow {AB}  + n\,.\,\overrightarrow {AC} \)(*)

Ta có:  \(\overrightarrow {AE}  = \left( {\frac{1}{2}; - 1} \right)\), \(m\,.\,\overrightarrow {AB}  = m\left( {2;2} \right) = (2m;2m)\), \(n\,.\,\overrightarrow {AC}  = n( - 2; - 4) = ( - 2n; - 4n)\)

Do đó (*) \( \Leftrightarrow \left( {\frac{1}{2}; - 1} \right) = (2m;2m) + ( - 2n; - 4n)\)

\(\begin{array}{l} \Leftrightarrow \left( {\frac{1}{2}; - 1} \right) = (2m - 2n;2m - 4n)\\ \Leftrightarrow \left\{ \begin{array}{l}\frac{1}{2} = 2m - 2n\\ - 1 = 2m - 4n\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m = 1\\n = \frac{3}{4}\end{array} \right.\end{array}\)

Vậy \(\overrightarrow {AE}  = \overrightarrow {AB}  + \frac{3}{4}.\overrightarrow {AC} \)

28 tháng 11 2022

a: \(cos\left(\overrightarrow{a},\overrightarrow{b}\right)=\dfrac{\left|0\cdot4+4\cdot\left(-2\right)\right|}{\sqrt{0^2+4^2}\cdot\sqrt{4^2+2^2}}=\dfrac{8}{4\cdot2\sqrt{5}}=\dfrac{1}{\sqrt{5}}\)

b: \(\left(\overrightarrow{a}+2\cdot\overrightarrow{b}\right)=\left(8;0\right)\)

\(\left(\overrightarrow{a}+2\overrightarrow{b}\right)\cdot\overrightarrow{c}=-1\)

nên \(8x+0y=-1\)

=>x=-1/8

\(\left(-\overrightarrow{b}+2\cdot\overrightarrow{c}\right)=\left(-4+2x;2+2y\right)\)

\(\overrightarrow{a}\left(-\overrightarrow{b}+2\overrightarrow{c}\right)=8+8y=6\)

=>8y=-2

=>y=-1/4

17 tháng 12 2023

Câu 4:

Áp dụng định lý Pytago

\(BC^2=AB^2+AC^2\Rightarrow BC=2\)

Ta có:

\(\overrightarrow{CA}.\overrightarrow{BC}=-\overrightarrow{CA}.\overrightarrow{CB}=-\dfrac{CA^2+CB^2-AB^2}{2}=-\dfrac{2+4-2}{2}=-2\)

Câu 5:

Gọi M là trung điểm BC

\(\overrightarrow{AM}=\dfrac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\)

Mà: \(\overrightarrow{AG}=\dfrac{2}{3}\overrightarrow{AM}=\dfrac{1}{3}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\)

Câu 6:

\(\left|\overrightarrow{a}-\overrightarrow{b}\right|=3\)

\(a^2+b^2-2\overrightarrow{a}.\overrightarrow{b}=9\)

\(\overrightarrow{a}.\overrightarrow{b}=\dfrac{1^2+2^2-9}{2}=-2\)

Câu 7: 

\(\left|\overrightarrow{AB}-\overrightarrow{AD}+\overrightarrow{CD}\right|=\left|\overrightarrow{DB}+\overrightarrow{CD}\right|\)

                              \(=\left|\overrightarrow{DB}-\overrightarrow{DC}\right|=\left|\overrightarrow{CB}\right|=BC=a\)