Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: CD vuông góc AD; CD vuông góc SA
=>CD vuông góc (SAD)
b: BD vuông góc AC; BD vuông góc SA
=>BD vuông góc (SAC)
=>(SBD) vuông góc (SAC)
c: (SC;(ABCD))=(CS;CA)=góc SCA
tan SCA=SA/AC=căn 3
=>góc SCA=60 độ
a) Xét tam giác SAB và tam giác SAD có:
+) Chung SA
+) \(AB=AD\)
+) \(\widehat{SAB}=\widehat{SAD}=90^0\) (Vì \(SA\perp\left(ABCD\right)\Rightarrow\left\{{}\begin{matrix}SA\perp AB\\SA\perp AD\end{matrix}\right.\) )
\(\Rightarrow\Delta SAB=\Delta SAD\left(c-g-c\right)\)
\(\Rightarrow\widehat{SAB}=\widehat{SAD}\)
\(\Rightarrow\Delta SAH=\Delta SAK\left(ch-gn\right)\)
\(\Rightarrow SH=SK\)
Mà SB=SD (Do \(\Delta SAB=\Delta SAD\))
\(\Rightarrow\dfrac{SH}{SB}=\dfrac{SK}{SD}\)
\(\Rightarrow\)HK||BD( Áp dụng Talet cho tam giác SBD)
b)Đặt SA=x, AB=y
Gọi O là tâm của đáy (ABCD), trong mp(SAC) cho SO cắt AI tại J
Ta tính được \(SC=\sqrt{x^2+2y^2}\) và SO=\(\sqrt{x^2+\dfrac{y^2}{2}}\)
Áp dụng định lí cos cho tam giác OSC có:
\(2SO.SC.\cos OSC=SO^2+SC^2-OC^2=x^2+\dfrac{y^2}{2}+x^2+2y^2-\dfrac{y^2}{2}=2x^2+2y^2\)
\(\Rightarrow SO.SC.cosOSC=x^2+y^2\)
\(\dfrac{SJ}{SO}=\dfrac{SI}{SO.cosOSC}=\dfrac{SA^2}{SC.SO.cosOSC}=\dfrac{x^2}{x^2+y^2}\left(1\right)\)
\(SK=\dfrac{SA^2}{SD}\Rightarrow\dfrac{SK}{SD}=\dfrac{SA^2}{SD^2}=\dfrac{x^2}{x^2+y^2}\left(2\right)\)
Từ (1) và (2), áp dụng định lí Talet đảo cho tam giác SDO ta có KJ||DO hay KJ||BD
Chứng minh tương tự ta có: JH||BD
Mà HK||BD nên K,H,J thẳng hàng
\(\Rightarrow\exists1\) mặt phẳng chứa 4 điểm A,H,I,K (Vì AI cắt HK tại J)
\(\Rightarrow I\in mp\left(AHK\right)\)(đpcm)
Ta có: \(\left\{{}\begin{matrix}BD\perp AC\\SA\perp\left(ABCD\right)\Rightarrow SA\perp BD\end{matrix}\right.\Rightarrow BD\perp\left(SAC\right)\)
Mà HK||BD
\(\Rightarrow HK\perp\left(SAC\right)\left(đpcm\right)\)
Bạn kiểm tra lại đề,
1. ABCD là hình thang vuông tại A và B hay A và D? Theo dữ liệu này thì ko thể vuông tại B được (cạnh huyền DC nhỏ hơn cạnh góc vuông AB là cực kì vô lý)
2. SC và AC cắt nhau tại C nên giữa chúng không có khoảng cách. (khoảng cách bằng 0)
Nguyễn Việt Lâm
e xin loi a
ABCD là hình thang vuông tại A và D
còn đoạn sau khoảng cách giữa 2 đt SC và AC thì e kh biet no sai o đau
anh giup em vs ah
a: ta có: BC\(\perp\)AB(ABCD là hình vuông)
BC\(\perp\)SA(SA\(\perp\)(ABCD))
AB,SA cùng thuộc mp(SAB)
Do đó: BC\(\perp\)(SAB)
b: Ta có: BD\(\perp\)AC(ABCD là hình vuông)
BD\(\perp\)SA(SA\(\perp\)(ABCD))
AC,SA cùng thuộc mp(SAC)
Do đó: BD\(\perp\)(SAC)
c: Ta có: BC\(\perp\)(SAB)
AH\(\subset\)(SAB)
Do đó: BC\(\perp\)AH
Ta có: AH\(\perp\)SB
AH\(\perp\)BC
SB,BC cùng thuộc mp(SBC)
Do đó: AH\(\perp\)(SBC)
d: Ta có: AH\(\perp\)(SBC)
SC\(\subset\)(SBC)
Do đó: AH\(\perp\)SC
Ta có: CD\(\perp\)SA(SA\(\perp\)(ABCD))
CD\(\perp\)AD(ABCD là hình vuông)
SA,AD cùng thuộc mp(SAD)
Do đó: CD\(\perp\)(SAD)
=>AK\(\perp\)CD
mà AK\(\perp\)SD
và CD,SD cùng thuộc mp(SCD)
nên AK\(\perp\)(SCD)
=>AK\(\perp\)SC
Ta có: SC\(\perp\)AK
SC\(\perp\)AH
AK,AH cùng thuộc mp(AKH)
Do đó: SC\(\perp\)(AKH)
1: AC=căn a^2+a^2=a*căn 2
=>SC=căn SA^2+AC^2=a*căn 8
SB=căn AB^2+SA^2=a*căn 7
Vì SB^2+BC^2=SC^2
nên ΔSBC vuông tại B
=>SB vuông góc BC
a: BC vuông góc AB; BC vuông góc SA
=>BC vuông góc (SAB)
b: (BS;(BACD))=(BS;BA)=góc SBA
tan SBA=SA/AB=căn 5/2
=>góc SBA=48 độ
(SC;(ABCD))=(CS;CA)=góc SCA
tan SCA=SA/AC=1
=>góc SCA=45 độ