K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(BC=\sqrt{5^2+12^2}=13\left(cm\right)\)

MB=MC

B,M,C thẳng hàng

Do đó: M là trung điểm của BC

=>MB=MC=13/2=6,5cm

Xét ΔCMN vuông tại M và ΔCAB vuông tại A có

góc C chung

=>ΔCMN đồng dạng với ΔCAB

=>MN/AB=CM/CA

=>MN/5=6,5/12=13/24

=>MN=65/24(cm)

20 tháng 8 2017

A B C N M H

BÀI LÀM:

a) Vì tam giác ABC vuông tại A

Theo định lý Py-ta-go, ta có

BC2 = AB2 + AC

=> BC2 = 52 + 122

=> BC2 = 25 + 144

=> BC2 = 169

=> BC = 13

Vì M là trung điểm của BC

=> BM = CM = BC / 2 = 13/2 = 6,5

Xét tam giác ABC và tam giác MNC có

Góc BAC = góc NMC = 90o (tam giác ABC vuông tại A, MN vuông góc với BC)

Góc C là góc chung

=> Tam giác ABC đồng dạng với tam giác MNC (g.g)

\(=>\frac{AB}{MN}=\frac{AC}{MC}\) 

\(=>\frac{5}{MN}=\frac{12}{6,5}\)

\(=>MN=\frac{6,5.5}{12}=\frac{65}{24}\)

b) Vì tam giác ABC vuông tại A có AH vuông góc với BC

AB2 = BH.BC

\(=>BH=\frac{AB^2}{BC}\)

\(=>BH=\frac{5^2}{13}\)

\(=>BH=\frac{25}{13}\)

Vì BH + HC = BC

=>         HC = BC - BH

=>         \(HC=13-\frac{25}{13}\)

=>         \(HC=\frac{144}{13}\)

Vì tam giác ABC vuông tại A có AH vuông góc với BC

=> AH2 = BH.HC

=> \(AH^2=\frac{25}{13}.\frac{144}{13}\)

=> \(AH^2=\frac{3600}{169}\)

=> \(AH=\sqrt{\frac{3600}{169}}\)

=> \(AH=\frac{60}{13}\)

Cậu chưa cho câu hỏi câu b) nhưng có phải là: "Gọi AH là đường cao thuộc BC. Tính HB, AH và HC", đại loại vậy đúng hăm?

Bài này có thể chia 2 trường hợp nhưng tớ mới làm trường hợp MN cắt AC còn MN cắt AB thì để tớ trả lời sau nhen~

11 tháng 7 2018

Xét tg ABC vuông tại A

\(\Rightarrow AC^2+AB^2=BC^2\left(Pitago\right)\)

\(\Rightarrow BC^2=4^2+3^2\)

\(\Rightarrow BC^2=25\)

\(\Rightarrow BC=5\left(cm\right)\)

Vì M là trung điểm của BC

\(\Rightarrow BM=CM=\frac{BC}{2}=\frac{5}{2}=2,5\)

Xét tg CMN vuông tại M

\(\Rightarrow CM^2+MN^2=CN^2\left(Pitago\right)\)

\(\Rightarrow MN^2=4^2-2,5^2\)

\(\Rightarrow MN=\sqrt{9,75}\left(cm\right)\)

11 tháng 7 2018

sosorry

a: BC=căn 6^2+8^2=10cm

AH=6*8/10=4,8cm

c:

Xét tứ giác ANHM có

góc ANH=góc AMH=góc MAN=90 độ

=>ANHM là hình chữ nhật

AD vuông góc MN

=>góc DAC+góc ANM=90 độ

=>góc DAC+góc AHM=90 độ

=>góc DAC+góc ABC=90 độ

=>góc DAC=góc DCA

=>DA=DC 

góc DAC+góc DAB=90 độ

góc DCA+góc DBA=90 độ

mà góc DAC=góc DCA

nên góc DAB=góc DBA

=>DA=DB

=>DB=DC

=>D là trung điểm của BC

AH
Akai Haruma
Giáo viên
27 tháng 9 2023

Lời giải:

a. Ta thấy $\widehat{AHC}=90^0$ (góc nt chắn nửa đường tròn $(O)$ - chắn đường kính AC)

$\Rightarrow AH\perp HC$ hay $AH\perp BC$ (đpcm) 

b. Do tam giác $BHA$ vuông tại $H$ nên đường trung tuyến $HM$ bằng nửa cạnh huyền $BA$

$\Rightarrow HM=MA$

$\Rightarrow \widehat{MHA}=\widehat{MAH}=\widehat{BAH}=90^0-\widehat{HAC}=\widehat{HCA}$

$\Rightarrow HM$ là tiếp tuyến $(O)$.

c. 

Dễ thấy $\widehat{ADC}=90^0$ (góc nt chắn nửa đường tròn)

$\Rightarrow DA\perp DC$

$\Rightarrow \frac{DA}{DC}=\cot \widehat{DAC}=\cot A_1(*)$

$\frac{DC}{DE}=\cot \widehat{DCE}=\cot C_1$

Mà $\widehat{C_1}=90^0-\widehat{E_1}=90^0-\widehat{E_2}=\widehat{A_2}=\widehat{A_1}$

$\Rightarrow \frac{DC}{DE}=\cot C_1=\cot A_1(**)$

Từ $(*); (**)\Rightarrow \frac{DA}{DC}=\frac{DC}{DE}\Rightarrow DA.DE=DC^2$ 

AH
Akai Haruma
Giáo viên
27 tháng 9 2023

Hình vẽ:

27 tháng 10 2021

a: AC=16(cm)

AM=10(cm)

27 tháng 10 2021

phần d bạn :,)))