Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(g\left(x\right)=f\left(x\right)-10\) (bậc 4)
\(\Leftrightarrow\left\{{}\begin{matrix}g\left(1\right)=0\\g\left(2\right)=0\\g\left(3\right)=0\end{matrix}\right.\Leftrightarrow g\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-m\right)\) (m là hằng số)
\(\Leftrightarrow f\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-m\right)-10\\ \Leftrightarrow f\left(9\right)=8\cdot7\cdot6\left(9-m\right)-10=336\left(9-m\right)-10\\ f\left(-5\right)=\left(-6\right)\left(-7\right)\left(-8\right)\left(-5-m\right)-10=336\left(m+5\right)-10\)
Vậy \(A=336\left(9-m\right)+336\left(m+5\right)-20=4684\)
Chúc bạn hok tốt <3
Answer:
\(f\left(1\right)=2\Rightarrow1+a+b+c+d+e=2\)
\(f\left(2\right)=5\Rightarrow32+16a+8b+4c+2d+e=5\)
\(f\left(3\right)=10\Rightarrow243+81a+27b+9c+3d+e=10\)
\(f\left(4\right)=17\Rightarrow1024+256a+64b+16c+4d+e=17\)
\(f\left(5\right)=26\Rightarrow3125+625a+125b+25c+5d+e=26\)
Rút gọn các ẩn đi thì được:
\(a=-15\)
\(b=85\)
\(c=-224\)
\(d=274\)
\(e=-119\)
\(\Rightarrow f\left(x\right)=x^5-15x^4+85x^3-224x^2+274x-119\)
Xét hàm \(g\left(x\right)=f\left(x\right)-10x\)
\(\Rightarrow g\left(1\right)=f\left(1\right)-10.1=10-10=0\)
Tương tự \(g\left(2\right)=0\) ; \(g\left(3\right)=0\)
\(\Rightarrow g\left(x\right)\) luôn có 3 nghiệm \(x=\left\{1;2;3\right\}\)
\(\Rightarrow g\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-a\right)\) với a là số thực bất kì
\(\Rightarrow f\left(x\right)=g\left(x\right)+10x=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-a\right)+10x\)
\(\Rightarrow f\left(12\right)=990\left(12-a\right)+120=12000-990a\)
\(f\left(-8\right)=-990\left(-8-a\right)-80=7840+990a\)
\(\Rightarrow\frac{f\left(12\right)+f\left(-8\right)}{10}+15=\frac{12000-990a+7840+990a}{10}+15=1999\)
Đặt \(g(x)=10x\).
Ta có \(g\left(1\right)=10=f\left(1\right);g\left(2\right)=20=f\left(2\right);g\left(3\right)=30=f\left(3\right)\).
Từ đó \(\left\{{}\begin{matrix}f\left(1\right)-g\left(1\right)=0\\f\left(2\right)-g\left(2\right)=0\\f\left(3\right)-g\left(3\right)=0\end{matrix}\right.\)
\(\Rightarrow f\left(x\right)-g\left(x\right)=Q\left(x\right).\left(x-1\right)\left(x-2\right)\left(x-3\right)\).
\(\Rightarrow f\left(x\right)=10x+Q\left(x\right)\left(x-1\right)\left(x-2\right)\left(x-3\right)\)
\(\Rightarrow f\left(8\right)+f\left(-4\right)=80+Q\left(x\right).7.6.5+\left(-40\right)+Q\left(x\right).\left(-5\right).\left(-6\right).\left(-7\right)=80-50=40\).
Đoạn cuối mình làm nhầm nhé.
Đáng lẽ phải cm Q(x) là đa thức dạng x + m, rồi biến đổi \(f\left(8\right)+f\left(-4\right)=80+Q\left(8\right).7.6.5+\left(-40\right)+Q\left(-4\right).\left(-5\right).\left(-6\right).\left(-7\right)=80-40+\left(m+8\right).7.6.5-\left(m-4\right).5.6.7=12.5.6.7+40=2560\).
Mình đánh vội nên chưa suy nghĩ kĩ.