K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2016

a. P(-1)= 5.(-1)-\(\frac{1}{2}\)= -5-\(\frac{1}{2}\)=\(\frac{-11}{2}\)

F(x)= \(\frac{-3}{10}\)<=> 5x-\(\frac{1}{2}\)=\(\frac{-3}{10}\)

<=> 5x= \(\frac{-3}{10}\)+\(\frac{1}{2}\)

<=> 5x=\(\frac{1}{5}\)

<=> x=\(\frac{1}{25}\)

b, nghiệm của đa thức trên là:

5x-\(\frac{1}{2}\)=0

5x=\(\frac{1}{2}\)

x=\(\frac{1}{10}\)

Vậy đa thức trên có nghiệm x=\(\frac{1}{10}\)

23 tháng 5 2016

a) P(-1) đâu có trong giả thiết 

F(x) = 5x - 1/2 = -3/10

           5x          = -3/10 + 1/2

            5x         = 1/5

              x         = 1/5 : 5

              x          = 1/25

F(x) = 5x - 1/2 = 0

           5x          = 0 + 1/2

             5x         = 1/2

             x            = 1/2 : 5 

             x            = 1/10

a: \(f\left(-2\right)=5\cdot4-8-8=4\)

b: \(f\left(x\right)+g\left(x\right)=6x^2+2x-8\)

c: Đặt G(x)=0

=>x(x-2)=0

=>x=0 hoặc x=2

16 tháng 3 2016

mặc kệ biến chú tâm vào hệ trong ngoặc rồi mũ nó lên

a)1

b)1

12 tháng 4 2016

bài 1:

a) C= 0

hay 3x+5+(7-x)=0

3x+(7-x)=-5

với 3x=-5

x= -5:3= \(x = { {-5} \over 3}\)

với 7-x=-5

x= 7+5= 12

=> nghiệm của đa thức C là: x=\(x = { {-5} \over 3}\) và x= 12

mình làm một cái thui nhá, còn đa thức D cậu lm tương tự nha

12 tháng 4 2016

EM CHỊU RỒI ANH ƠI!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

31 tháng 7 2016

Bài 3: 

\(f\left(x\right)=9x^3-\frac{1}{3}x+3x^2-3x+\frac{1}{3}x^2-\frac{1}{9}x^3-3x^2-9x+27+3x\) 

\(f\left(x\right)=\left(9x^3-\frac{1}{9}x^3\right)-\left(\frac{1}{3}x+3x+9x-3x\right)+\left(3x^2-3x^2\right)+27\) 

\(f\left(x\right)=\frac{80}{9}x^3-\frac{28}{3}x+27\) 

Thay x = 3 vào đa thức, ta có:

\(f\left(3\right)=\frac{80}{9}.3^3-\frac{28}{3}.3+27\) 

\(f\left(3\right)=240-28+27=239\)

Vậy đa thức trên bằng 239 tại x = 3

Thay x = -3 vào đa thức. ta có:

\(f\left(-3\right)=\frac{80}{9}.\left(-3\right)^3-\frac{28}{3}.\left(-3\right)+27\)

\(f\left(-3\right)=-240+28+27=-185\)

31 tháng 7 2016

Bài 4: \(f\left(x\right)=2x^6+3x^2+5x^3-2x^2+4x^4-x^3+1-4x^3-x^4\)

\(f\left(x\right)=2x^6+\left(3x^2-2x^2\right)+\left(5x^3-x^3-4x^3\right)+\left(4x^4-x^4\right)\)

\(f\left(x\right)=2x^6+x^2+3x^4\)

Thay x=1 vào đa thức, ta có:

\(f\left(1\right)=2.1^6+1^2+3.1^4=2+1+3=6\)

Đa thức trên bằng 6 tại x =1

Thay x = - 1 vào đa thức, ta có:

\(f\left(-1\right)=2.\left(-1\right)^6+\left(-1\right)^2+3.\left(-1\right)^4=2+1+3=6\)

Đa thức trên có nghiệm = 0

7 tháng 8 2019

a) f(x) = x(x - 5) + 2(x - 5)

x(x - 5) + 2(x - 5) = 0

<=> (x - 5)(x - 2) = 0

        x - 5 = 0 hoặc x - 2 = 0

        x = 0 + 5         x = 0 + 2

        x = 5               x = 2

=> x = 5 hoặc x = 2

a,   f(x) có nghiệm 

\(\Leftrightarrow x\left(x-5\right)+2\left(x-5\right)=0\)

\(\Rightarrow\left(x-5\right)\left(x+2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-5=0\\x+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=5\\x=-2\end{cases}}\)

->tự kết luận.

b1, để g(x) có nghiệm thì:

\(g\left(x\right)=2x\left(x-2\right)-x^2+5+4x=0\)

\(\Rightarrow2x^2-4x-x^2+5+4x=0\)

\(\Rightarrow x^2+5=0\)

Do \(x^2\ge0\forall x\)nên\(x^2+5\ge5\forall x\)

suy ra: k tồn tại \(x^2+5=0\)

Vậy:.....

b2, 

\(f\left(x\right)=x\left(x-5\right)+2\left(x-5\right)\)

\(=x^2-5x+2x-10\)

\(=x^2-3x-10\)

\(f\left(x\right)-g\left(x\right)=x^2+5-\left(x^2-3x-10\right)\)

\(=x^2+5-x^2+3x-10=3x-5\)

12 tháng 6 2021

a) f(x) = 3x3-2x2+7x-1

g(x) = x2+4x-1

b) h(x) = 3x3-2x2+7x-1-x2-4x+1

            = 3x3-3x2+3x

h(x) = 3x3-3x2+3x=0

       ⇒ 3(x3-x2+x)=0

       ⇒ x3-x2+x=0

đến đây mik ko biết làm nữa