Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
thay x = 0 vào f ta có:
f(0) = c mà đa thức tại x = 0 là số nguyên
=> c là số nguyên
thay x = 1 vào f ta có:
f(1) = a + b + c mà đa thức tại x = 1 là số nguyên và c là số nguyên
=> a + b là số nguyên
thay x = -1 vào f ta có:
f(-1) = a - b + mà đa thức tại x = -1 là số nguyên và c là số nguyên
=> a - b là số nguyên
ta có: a + b là số nguyên và a - b là số nguyên
=> (a+b) + (a-b) là số nguyên
=> 2a là số nguyên
Lời giải:
Đặt $2a=m, a+b=n$ với $m,n$ là số nguyên. Khi đó:
$a=\frac{m}{2}; b=n-\frac{m}{2}$.
Khi đó:
$f(x)=\frac{m}{2}x^2+(n-\frac{m}{2})x+c$ với $m,n,c$ là số nguyên.
$f(x)=\frac{m}{2}(x^2-x)+nx+c=\frac{m}{2}x(x-1)+nx+c$
Với $x$ nguyên thì $x(x-1)$ là tích 2 số nguyên liên tiếp nên:
$x(x-1)\vdots 2$
$\Rightarrow \frac{m}{2}x(x-1)\in\mathbb{Z}$
Mà: $nx\in\mathbb{Z}, c\in\mathbb{Z}$ với $x,m,n,c\in\mathbb{Z}$
$\Rightarrow f(x)\in\mathbb{Z}$
Ta có đpcm.
1:
a: f(3)=2*3^2-3*3=18-9=9
b: f(x)=0
=>2x^2-3x=0
=>x=0 hoặc x=3/2
c: f(x)+g(x)
=2x^2-3x+4x^3-7x+6
=6x^3-10x+6
a: \(f\left(-2\right)=5\cdot4-8-8=4\)
b: \(f\left(x\right)+g\left(x\right)=6x^2+2x-8\)
c: Đặt G(x)=0
=>x(x-2)=0
=>x=0 hoặc x=2
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}a+b=-1\\2a+b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=-4\end{matrix}\right.\)
2:
a: BC=căn 6^2+8^2=10cm
b: ΔABC vuông tại A có AM là trung tuyến
nên MA=MB
=>góc MAB=góc MBA
3:
a: Hệ số là -2/3
Biến là x^2;y^7
Bậc là 9
b: \(=3x^2y^2\left(-2\right)xy^5=-6x^3y^7\)
\(f\left(2\right)=4a-14+2=8\)
\(\Rightarrow a=5\)