Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
phần a bạn Nguyễn xuân khải làm đúng rồi nên mình chỉ làm phần b
b)h(2)=2*2^2-7m*2+4=8-14m+4=0
=>4-14m=0
=>14m=4
=>m=\(\frac{2}{7}\)
Vậy m=\(\frac{2}{7}\)
Lời giải:
a)
$P(x)+Q(x)=4x^2+x-5+5x^3-2x^2+2x-1=5x^3+2x^2+3x-6$
b)
$H(x)=P(x)+ax=4x^2+x-5+ax=4x^2+x(a+1)-5$
c) Để $H(x)$ có nghiệm $x=2$
$\Leftrightarrow H(2)=0$
$\Leftrightarrow 4.2^2+2(a+1)-5=0$
$\Leftrightarrow a=\frac{-13}{2}$
a) Ta có f(7) = a7 + b và f(2) + f(3) = (a2+ b) + (a3 + b) = 5a + 2b. Vậy để f(7) = f(2) + f(3), ta cần giải phương trình:
a7 + b = 5a + 2b
Simplifying, ta được: 2a = b.
Vậy điều kiện của a và b để f(7) = f(2) + f(3) là b = 2a.
b) Để tìm nghiệm của P(x), ta cần giải phương trình (x-2)(2x+5) = 0:
(x-2)(2x+5)= 0
→ X-2 = 0 hoặc 2x+5 = 0
→ x = 2 hoặc x = -5/2
Vậy nghiệm của P(x) là x = 2 hoặc x =-5/2.
c) Ta biết rằng đa thức P(x) có 1 nghiệm là -2, vậy ta có thể viết P(x)
dưới dạng:
P(x) = (x+2)(x^3 - 2x^2 + ax - 2)
Từ đó suy ra:
P(-2) = (-2+2)(8 - 4a - 2) = 0
⇔-8a= 16
⇔a = -2
Vậy hệ số a của P(x) là -2.
Cho đa thức F(x) = 2ax^2 + bx (a,b là hằng số). Xác định a,b để đa thức F(x) có nghiệm x = -1 và F(1) = 4
Vì đa thức F(x) có nghiệm x = -1 nên F(-1) = 0
⇒ 2a - b = 0 ⇒ b = 2a
Vì F(1) = 4 ⇒ 2a + b = 4 ⇒ b = 4 - 2a(1)
Từ đây ta có 2a = 4 - 2a ⇒ 4a = 4 ⇒ a = 1
Thay a=1 vào (1)
=> b=4-2.1=4-2=2
Vậy a=1 vs b=2
nghiem la 2--> x=2 va P(2)=0
--> (a-1).23-2.2-2+4=0
(a-1).8-4-2+4=0
(a-1).8=0+2-4+4
(a-1).8=2
a-1=1/4
a=1/4+1
a=5/4