K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2017

Giả sử p(x) = ax4+bx3+cx2+dx+e ta có:

suy ra:

p(1)= a+b+c+d+e=-1                                              a+b+c+d+e=-1               

p(2)= 16a+8b+4c+2d+e=2                                      15a+7b+3c+d=3   

p(3)= 81a+27b+9c+3d+e=7              tương đương {  80a+26b+8c+2d=8        Chỗ này có máy vinacal bấm ra luôn nhưng mk ko có

p(4)= 256a+64b+16c+4d+e=14                                255a+63b+15c+3d=15

p(5)=625a+125b+25c+5d+e=24                              624a+124b+24c+4d=25

                        a+b+c+d+e=-1                                       a=1/24

                        15a+7b+3c+d=3                                     b=-5/12

tương đương {  50a+12b+2c =2              tương đương{   c=59/24

                         210a+42b+6c=6                                     d=-25/12

                         564a+96b+12c=13                                  e=-1

Vậy p(x)=1/24x4-5/12x3+59/24x2-25/12x-1

Thay các số trên vào sẽ ra 

HUHUHUHU tui cũng ôn thi máy tính cầm tay bị loại rồi!! 

11 tháng 8 2019

Hoặc bạn có thể dùng Nội suy Newton

Sẽ giúp bạn tìm ra đa thức P(x) nhanh hơn

12 tháng 9 2015

thử vào câu hỏi tương tự coi nhìn vào mà làm

15 tháng 6 2016

A = ((20 + 1) . 20 : 2) . 2 = 420

B = (25 + 20) . 6  : 2 = 135

C = ( 33 + 26) . 8 : 2 = 236

D = (1 + 100) .100 : 2 = 5050

15 tháng 6 2016

Toán lướp 9 dễ như vậy à bạn

NV
24 tháng 3 2022

Đặt \(Q\left(x\right)=P\left(x\right)-3x-2\)

\(\Rightarrow Q\left(1\right)=Q\left(2\right)=Q\left(4\right)=0\)

\(\Rightarrow Q\left(x\right)\) có 3 nghiệm \(x=\left\{1;2;4\right\}\)

Do \(P\left(x\right)\) bậc 4 và có hệ số cao nhất bằng 1 \(\Rightarrow Q\left(x\right)\) cũng là đa thức bậc 4 có hệ số cao nhất bằng 1

\(\Rightarrow Q\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-4\right)\left(x-x_0\right)\) với \(x_0\in R\)

\(\Rightarrow P\left(x\right)=Q\left(x\right)+3x+2=\left(x-1\right)\left(x-2\right)\left(x-4\right)\left(x-x_0\right)+3x+2\)

\(\Rightarrow P\left(5\right)=12\left(5-x_0\right)+17\) ; \(P\left(-1\right)=-30\left(-1-x_0\right)-1\)

\(\Rightarrow S=60\left(5-x_0\right)+85-60\left(-1-x_0\right)-2=443\)

24 tháng 3 2022

Cám ơn thầy ạ, em xin phép gửi đến thầy đề thi  chọn học sinh giỏi toán lớp 9 của thành phố Hà Nội vừa thi xong thầy ạundefined

NV
20 tháng 3 2022

Xét đa thức bậc 8: \(P\left(x\right)=x^8+\dfrac{x^3-x}{2}\)

Ta có, \(P\left(x\right)-P\left(-x\right)=x^8+\dfrac{x^3-x}{2}-\left(-x\right)^8-\dfrac{\left(-x\right)^3-\left(-x\right)}{2}=x^3-x\)

Thay \(x=1;2;3;4\) đều thỏa mãn

\(\Rightarrow P\left(5\right)-P\left(-5\right)=5^3-5=120\)

20 tháng 3 2022

Em cám ơn thầy Lâm ạ!

13 tháng 8 2018

Vì P(x) là đa thức bậc 4 có hệ số cao nhất là 1 . 

Giả sử : P(x) có dạng ax4+bx3+cx2+dx+e(a;b;c;d<1)

Có \(P\left(1\right)=a+b+c+d+e=3\)

\(P\left(3\right)=81a+27x+9c+3d+e=11\)

\(P\left(5\right)=625a+125b+25c+5d+e=27\)

Giải x ra rồi tính

19 tháng 6 2023

a) Có:

 \(a+b+c=0\\\Leftrightarrow\left(a+b+c\right)^2=0\\ \Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=0\\ \Leftrightarrow2ab+2bc+2ca=-1\\ \Leftrightarrow ab+bc+ca=-\dfrac{1}{2}\\ \Leftrightarrow\left(ab+bc+ca\right)^2=\left(-\dfrac{1}{2}\right)^2=\dfrac{1}{4}\\ \Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2a^2bc+2ab^2c+2abc^2=\dfrac{1}{4}\\ \Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=\dfrac{1}{4}\\ \Leftrightarrow a^2b^2+b^2c^2+c^2a^2=\dfrac{1}{4}-0=\dfrac{1}{4} \)

19 tháng 6 2023

câu (b) cho đa thức P (x) = cái gì?

1 tháng 9 2018

1) 

Đặt \(f\left(x\right)=ax^4+bx^3+cx^2+dx+e.\)( a khác 0 )

Ta có:

\(f\left(1\right)=a+b+c+d+e=0\)                                            (1)

\(f\left(2\right)=16a+8b+4c+2d+e=0\)                              (2)

\(f\left(3\right)=81a+27b+9c+3d+e=0\)                           (3)

\(f\left(4\right)=256a+64b+16c+4d+e=6\)                      (4)

\(f\left(5\right)=625a+125b+25c+5d+e=72\)                (5)

\(A=f\left(2\right)-f\left(1\right)=15a+7b+3c+d=0\)

\(B=f\left(3\right)-f\left(2\right)=65a+19b+5c+d=0\)

\(C=f\left(4\right)-f\left(3\right)=175a+37b+7c+d=6\)

\(D=f\left(5\right)-f\left(4\right)=369a+61b+9c+d=72-6=66\)

\(E=B-A=50a+12b+2c=0\)

\(F=C-B=110a+18b+2c=6\)

\(G=D-C=194a+24b+2c=66-6=60\)

Tiếp tục lấy H=F-E; K=G-F; M=H-K

Ta tìm được a

Thay vào tìm được b,c,d,e

2 tháng 9 2018

1. gọi đa thức cần tìm là f(x) =a.x^4+b.x^3+c.x^2+dx+e

có f(1)=f(2)=f(3) = 0 nên x=1,2,3 la nghiệm của f(x) = 0 vậy f(x) có thể viết dưới dạng f(x) = (x-1)(x-2)(x-3)(mx+n) 

thay f(4)=6 và f(5)=72 tìm được m =2 và n= -7 

Vậy đa thức f(x) =(x-1)(x-2)(x-3)(2x-7) => e = (-1).(-2).(-3).(-7) = 42

Với x=2010 thì (a 2010^4+b.2010^3+c.2010^2+d.2010 ) luôn chia hết 10 vậy số dư f(2010) chia 10 = số dư d/10 = 2 (42 chia 10 dư 2).

2. Thiếu dữ liệu 

3. đa thức f(x) chia đa thức (x-3) có số dư là 2 =>bậc f(x) = bậc (x-3)=1 và f(x) = m.(x-3) +2=mx+2-3m (1)

...........................................(x+4)...................9..........................................f(x) = n(x+4) + 9=nx+4n+9 (2)

để (1)(2) cùng xảy ra thì m=n và (2-3m)=(4n+9) => m = n = -1 khi đó đa thức f(x) = -x +5 

Không hiếu dữ liệu cuối f(x) chia 1 đa thức bậc 2 lại có thương là 1 đa thức bậc 2? => vô lý