K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2018

Thay x = -3 thì 1 là nghiệm của P(x)

Thay x = 5 thì 5 là nghiệm của P(x)

Vậy P(x) có ít nhất 2 nghiệm là 1 và 5.

Chúc bạn học tốt.

30 tháng 5 2018

+) Với x = 0 ta có :

\(0.f\left(0-2\right)=\left(0-4\right).f\left(0\right)\)

\(\Rightarrow0.f\left(-2\right)=-4.f\left(0\right)\)

\(\Rightarrow0=-4.f\left(0\right)\)

\(\Rightarrow f\left(0\right)=0\)

Như vậy x = 0 là một nghiệm của đa thức f(x)

+) Với x = 4 ta có :

\(4.f\left(4-2\right)=\left(4-4\right).f\left(4\right)\)

\(\Rightarrow4.f\left(2\right)=0.f\left(4\right)\)

\(\Rightarrow4.f\left(2\right)=0\)

\(\Rightarrow f\left(2\right)=0\)

Như vậy x = 4 là một nghiệm của đa thức f(x)

Vậy đa thức f(x) có ít nhất hai nghiệm

_Chúc bạn học tốt_

30 tháng 5 2018

Bài giải 

Cho \(x=0\)thì \(0.f\left(-2\right)=-4.f\left(0\right)=0\)

Cho \(x=2\)thì \(2.f\left(0\right)=-2.f\left(2\right)\)nên \(f\left(2\right)=-f\left(0\right)=0\)

Vậy \(f\left(x\right)\) có ít nhất 2 nghiệm là \(0\) và \(2\).

NV
18 tháng 3 2023

\(\left(x^2-25\right)f\left(x+1\right)=\left(x-2\right).f\left(x-1\right)\) (1)

Thay \(x=2\) vào (1) ta được:

\(-21.f\left(3\right)=0.f\left(1\right)=0\Rightarrow f\left(3\right)=0\)

\(\Rightarrow x=3\) là 1 nghiệm của \(f\left(x\right)\)

Thay \(x=5\) vào (1):

\(0.f\left(6\right)=3.f\left(4\right)\Rightarrow f\left(4\right)=0\)

\(\Rightarrow x=4\) là 1 nghiệm

Thay \(x=-5\) vào (1):

\(0.f\left(-4\right)=-7.f\left(-6\right)\Rightarrow f\left(-6\right)=0\)

\(\Rightarrow x=-6\) là 1 nghiệm

Vậy \(f\left(x\right)\) có ít nhất 3 nghiệm là \(x=\left\{3;4;-6\right\}\)

2 tháng 5 2018

Với \(x=\sqrt{4}\)ta có :

\(\left(x^2-4\right)P\left(\sqrt{4}+1\right)=\left(x^2-3\right)P\left(\sqrt{4}\right)\)

\(\Rightarrow\left(4-4\right)P\left(\sqrt{4}+1\right)=\left(4-3\right)P\left(\sqrt{4}\right)\)

\(\Rightarrow0.P\left(\sqrt{4}+1\right)=P\left(\sqrt{4}\right)\Rightarrow P\left(\sqrt{4}\right)=0\)

Vậy \(\sqrt{4}\)là 1 nghiệm của P(x)

Với \(x=\sqrt{3}\)

\(\Rightarrow\left(3-4\right)P\left(\sqrt{3}+1\right)=\left(3-3\right)P\left(\sqrt{3}\right)\)

\(\Rightarrow-P\left(\sqrt{3}+1\right)=0\)

\(\Rightarrow P\left(\sqrt{3}+1\right)=0\)

Vậy............

Tự làm tiếp nha

2 tháng 5 2018

vì (x2-4)P(x+1) = (x2-3)P(x) với mọi x nên :

- khi x2=4 =>  +) x=2 thì 0.P (x+1)=1.P(x) =>P(x) = 0.  vậy x=2 là 1 nghiệm của f(x)

                       +) x=-2 thì 0.P (x+1)=1.P(x) =>P(x) = 0.  vậy x=-2 là 1 nghiệm của f(x)

- khi x2=3 =>  +)  x=\(\sqrt{3}\) thì 5.P (x+1)=0.P(x) =>P(x+1) = 0.  vậy x=\(\sqrt{3}\) là 1 nghiệm của f(x)

                       +)  x= \(-\sqrt{3}\) thì 5.P (x+1)=0.P(x) =>P(x+1) = 0.  vậy x=\(\sqrt{3}\) là 1 nghiệm của f(x)

Do đó f(x) có ít nhất 4 nghiệm là: 2; -2; \(-\sqrt{3}\)\(\sqrt{3}\)

21 tháng 3 2020

1) Thay x=3 vào đẳng thức, thu được:

               \(3\times f\left(3+2\right)=\left(3^2-9\right)\times f\left(3\right)\)

    \(\Leftrightarrow\) \(3\times f\left(5\right)=0\times f\left(3\right)=0\)

    \(\Leftrightarrow\) \(f\left(5\right)=0\)  

2) Ta đã chứng minh x=5 là nhiệm của f(x)\(\Rightarrow\)Cần chứng minh f(x) có 2 nghiệm nữa

  •     Thay x=0 Vào đẳng thức, thu được

               \(0\times f\left(0+2\right)=\left(0^2-9\right)\times f\left(0\right)\)

     \(\Leftrightarrow\) \(f\left(0\right)=0\)

     \(\Rightarrow\)x=0 là ngiệm của f(x)

  •      Thay x=-3 và đẳng thức, thu được

                \(-3\times f\left(-3+2\right)=\left(\left(-3\right)^2-9\right)\times f\left(-3\right)\)

      \(\Leftrightarrow\)\(-3\times f\left(-1\right)=0\times f\left(-3\right)=0\)

      \(\Leftrightarrow\)\(f\left(-1\right)=0\)

       \(\Rightarrow\)x=-1 là nghiệm của f(x)

      Vậy f(x) có ít nhất 3 nghiệm là x=5; x=0; x=-1     

9 tháng 5 2018

đề bài yêu cầu gì vậy bạn 

9 tháng 5 2018

Ta có:

Với x=0.=>  0.h(0+1) = (0+2). h(0) => 2. h(0)= 0 . Mà 2 khác 0 nên h(0)= 0 . => o là nghiệm của h(x).

Với x=-2=> -2. h(-2+1)= (-2+2). h(-2) => -2.h(-1)=0.=> h(-1)= 0. => x=-1 là ngiệm của h(x).

 Vậy đa thức h(x) có ít nhất 2 nghiệm. Nhớ k đúng cho mìn nha. Thanks!!